File size: 5,238 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
import asyncio
from functools import partial
from typing import (
    Any,
    List,
    Mapping,
    Optional,
)

from ai21.models import CompletionsResponse
from langchain_core.callbacks import (
    AsyncCallbackManagerForLLMRun,
    CallbackManagerForLLMRun,
)
from langchain_core.language_models import BaseLLM
from langchain_core.outputs import Generation, LLMResult

from langchain_ai21.ai21_base import AI21Base


class AI21LLM(BaseLLM, AI21Base):
    """AI21LLM large language models.

    Example:
        .. code-block:: python

            from langchain_ai21 import AI21LLM

            model = AI21LLM()
    """

    model: str
    """Model type you wish to interact with. 
    You can view the options at https://github.com/AI21Labs/ai21-python?tab=readme-ov-file#model-types"""

    num_results: int = 1
    """The number of responses to generate for a given prompt."""

    max_tokens: int = 16
    """The maximum number of tokens to generate for each response."""

    min_tokens: int = 0
    """The minimum number of tokens to generate for each response."""

    temperature: float = 0.7
    """A value controlling the "creativity" of the model's responses."""

    top_p: float = 1
    """A value controlling the diversity of the model's responses."""

    top_k_return: int = 0
    """The number of top-scoring tokens to consider for each generation step."""

    frequency_penalty: Optional[Any] = None
    """A penalty applied to tokens that are frequently generated."""

    presence_penalty: Optional[Any] = None
    """ A penalty applied to tokens that are already present in the prompt."""

    count_penalty: Optional[Any] = None
    """A penalty applied to tokens based on their frequency 
    in the generated responses."""

    custom_model: Optional[str] = None
    epoch: Optional[int] = None

    class Config:
        """Configuration for this pydantic object."""

        allow_population_by_field_name = True

    @property
    def _llm_type(self) -> str:
        """Return type of LLM."""
        return "ai21-llm"

    @property
    def _default_params(self) -> Mapping[str, Any]:
        base_params = {
            "model": self.model,
            "num_results": self.num_results,
            "max_tokens": self.max_tokens,
            "min_tokens": self.min_tokens,
            "temperature": self.temperature,
            "top_p": self.top_p,
            "top_k_return": self.top_k_return,
        }

        if self.count_penalty is not None:
            base_params["count_penalty"] = self.count_penalty.to_dict()

        if self.custom_model is not None:
            base_params["custom_model"] = self.custom_model

        if self.epoch is not None:
            base_params["epoch"] = self.epoch

        if self.frequency_penalty is not None:
            base_params["frequency_penalty"] = self.frequency_penalty.to_dict()

        if self.presence_penalty is not None:
            base_params["presence_penalty"] = self.presence_penalty.to_dict()

        return base_params

    def _build_params_for_request(
        self, stop: Optional[List[str]] = None, **kwargs: Any
    ) -> Mapping[str, Any]:
        params = {}

        if stop is not None:
            if "stop" in kwargs:
                raise ValueError("stop is defined in both stop and kwargs")
            params["stop_sequences"] = stop

        return {
            **self._default_params,
            **params,
            **kwargs,
        }

    def _generate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> LLMResult:
        generations: List[List[Generation]] = []
        token_count = 0

        params = self._build_params_for_request(stop=stop, **kwargs)

        for prompt in prompts:
            response = self._invoke_completion(prompt=prompt, **params)
            generation = self._response_to_generation(response)
            generations.append(generation)
            token_count += self.client.count_tokens(prompt)

        llm_output = {"token_count": token_count, "model_name": self.model}
        return LLMResult(generations=generations, llm_output=llm_output)

    async def _agenerate(
        self,
        prompts: List[str],
        stop: Optional[List[str]] = None,
        run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> LLMResult:
        # Change implementation if integration natively supports async generation.
        return await asyncio.get_running_loop().run_in_executor(
            None, partial(self._generate, **kwargs), prompts, stop, run_manager
        )

    def _invoke_completion(
        self,
        prompt: str,
        **kwargs: Any,
    ) -> CompletionsResponse:
        return self.client.completion.create(
            prompt=prompt,
            **kwargs,
        )

    def _response_to_generation(
        self, response: CompletionsResponse
    ) -> List[Generation]:
        return [
            Generation(
                text=completion.data.text,
                generation_info=completion.to_dict(),
            )
            for completion in response.completions
        ]