File size: 1,603 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
{
 "cells": [
  {
   "attachments": {},
   "cell_type": "markdown",
   "id": "681a5d1e",
   "metadata": {},
   "source": [
    "## Run Template\n",
    "\n",
    "In `server.py`, set -\n",
    "```\n",
    "from fastapi import FastAPI\n",
    "from langserve import add_routes\n",
    "from propositional_retrieval import chain\n",
    "\n",
    "app = FastAPI(\n",
    "    title=\"LangChain Server\",\n",
    "    version=\"1.0\",\n",
    "    description=\"Retriever and Generator for RAG Chroma Dense Retrieval\",\n",
    ")\n",
    "\n",
    "add_routes(app, chain, path=\"/propositional-retrieval\")\n",
    "\n",
    "if __name__ == \"__main__\":\n",
    "    import uvicorn\n",
    "\n",
    "    uvicorn.run(app, host=\"localhost\", port=8000)\n",
    "\n",
    "```"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "id": "d774be2a",
   "metadata": {},
   "outputs": [],
   "source": [
    "from langserve.client import RemoteRunnable\n",
    "\n",
    "rag_app = RemoteRunnable(\"http://localhost:8001/propositional-retrieval\")\n",
    "rag_app.invoke(\"How are transformers related to convolutional neural networks?\")"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.2"
  }
 },
 "nbformat": 4,
 "nbformat_minor": 5
}