File size: 5,216 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
from typing import Optional, Type

from langchain.callbacks.manager import (
    AsyncCallbackManagerForToolRun,
    CallbackManagerForToolRun,
)
from langchain.pydantic_v1 import BaseModel, Field
from langchain.tools import BaseTool

from neo4j_semantic_ollama.utils import get_candidates, get_user_id, graph

recommendation_query_db_history = """
  MERGE (u:User {userId:$user_id})
  WITH u
  // get recommendation candidates
  OPTIONAL MATCH (u)-[r1:RATED]->()<-[r2:RATED]-()-[r3:RATED]->(recommendation)
  WHERE r1.rating > 3.5 AND r2.rating > 3.5 AND r3.rating > 3.5
        AND NOT EXISTS {(u)-[:RATED]->(recommendation)}
  // rank and limit recommendations
  WITH u, recommendation, count(*) AS count
  ORDER BY count DESC LIMIT 3
RETURN 'title:' + recommendation.title + '\nactors:' +
apoc.text.join([(recommendation)<-[:ACTED_IN]-(a) | a.name], ',') +
'\ngenre:' + apoc.text.join([(recommendation)-[:IN_GENRE]->(a) | a.name], ',')
AS movie
"""

recommendation_query_genre = """
MATCH (m:Movie)-[:IN_GENRE]->(g:Genre {name:$genre})
// filter out already seen movies by the user
WHERE NOT EXISTS {
  (m)<-[:RATED]-(:User {userId:$user_id})
}
// rank and limit recommendations
WITH m AS recommendation
ORDER BY recommendation.imdbRating DESC LIMIT 3
RETURN 'title:' + recommendation.title + '\nactors:' +
apoc.text.join([(recommendation)<-[:ACTED_IN]-(a) | a.name], ',') +
'\ngenre:' + apoc.text.join([(recommendation)-[:IN_GENRE]->(a) | a.name], ',')
AS movie
"""


def recommendation_query_movie(genre: bool) -> str:
    return f"""
MATCH (m1:Movie)<-[r1:RATED]-()-[r2:RATED]->(m2:Movie)
WHERE r1.rating > 3.5 AND r2.rating > 3.5 and m1.title IN $movieTitles
// filter out already seen movies by the user
AND NOT EXISTS {{
  (m2)<-[:RATED]-(:User {{userId:$user_id}})
}}
{'AND EXISTS {(m2)-[:IN_GENRE]->(:Genre {name:$genre})}' if genre else ''}
// rank and limit recommendations
WITH m2 AS recommendation, count(*) AS count
ORDER BY count DESC LIMIT 3
RETURN 'title:' + recommendation.title + '\nactors:' +
apoc.text.join([(recommendation)<-[:ACTED_IN]-(a) | a.name], ',') +
'\ngenre:' + apoc.text.join([(recommendation)-[:IN_GENRE]->(a) | a.name], ',')
AS movie
"""


nl = "\n"


def recommend_movie(movie: Optional[str] = None, genre: Optional[str] = None) -> str:
    """
    Recommends movies based on user's history and preference
    for a specific movie and/or genre.
    Returns:
        str: A string containing a list of recommended movies, or an error message.
    """
    user_id = get_user_id()
    params = {"user_id": user_id, "genre": genre}
    if not movie and not genre:
        # Try to recommend a movie based on the information in the db
        response = graph.query(recommendation_query_db_history, params)
        try:
            return (
                'Recommended movies are: '
                f'{f"###Movie {nl}".join([el["movie"] for el in response])}'
            )
        except Exception:
            return "Can you tell us about some of the movies you liked?"
    if not movie and genre:
        # Recommend top voted movies in the genre the user haven't seen before
        response = graph.query(recommendation_query_genre, params)
        try:
            return (
                'Recommended movies are: '
                f'{f"###Movie {nl}".join([el["movie"] for el in response])}'
            )
        except Exception:
            return "Something went wrong"

    candidates = get_candidates(movie, "movie")
    if not candidates:
        return "The movie you mentioned wasn't found in the database"
    params["movieTitles"] = [el["candidate"] for el in candidates]
    query = recommendation_query_movie(bool(genre))
    response = graph.query(query, params)
    try:
        return (
            'Recommended movies are: '
            f'{f"###Movie {nl}".join([el["movie"] for el in response])}'
        )
    except Exception:
        return "Something went wrong"


all_genres = [
    "Action",
    "Adventure",
    "Animation",
    "Children",
    "Comedy",
    "Crime",
    "Documentary",
    "Drama",
    "Fantasy",
    "Film-Noir",
    "Horror",
    "IMAX",
    "Musical",
    "Mystery",
    "Romance",
    "Sci-Fi",
    "Thriller",
    "War",
    "Western",
]


class RecommenderInput(BaseModel):
    movie: Optional[str] = Field(description="movie used for recommendation")
    genre: Optional[str] = Field(
        description=(
            "genre used for recommendation. Available options are:" f"{all_genres}"
        )
    )


class RecommenderTool(BaseTool):
    name = "Recommender"
    description = "useful for when you need to recommend a movie"
    args_schema: Type[BaseModel] = RecommenderInput

    def _run(
        self,
        movie: Optional[str] = None,
        genre: Optional[str] = None,
        run_manager: Optional[CallbackManagerForToolRun] = None,
    ) -> str:
        """Use the tool."""
        return recommend_movie(movie, genre)

    async def _arun(
        self,
        movie: Optional[str] = None,
        genre: Optional[str] = None,
        run_manager: Optional[AsyncCallbackManagerForToolRun] = None,
    ) -> str:
        """Use the tool asynchronously."""
        return recommend_movie(movie, genre)