File size: 2,000 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70

# csv-agent

This template uses a [csv agent](https://python.langchain.com/docs/integrations/toolkits/csv) with tools (Python REPL) and memory (vectorstore) for interaction (question-answering) with text data.

## Environment Setup

Set the `OPENAI_API_KEY` environment variable to access the OpenAI models.

To set up the environment, the `ingest.py` script should be run to handle the ingestion into a vectorstore.

## Usage

To use this package, you should first have the LangChain CLI installed:

```shell
pip install -U langchain-cli
```

To create a new LangChain project and install this as the only package, you can do:

```shell
langchain app new my-app --package csv-agent
```

If you want to add this to an existing project, you can just run:

```shell
langchain app add csv-agent
```

And add the following code to your `server.py` file:
```python
from csv_agent.agent import agent_executor as csv_agent_chain

add_routes(app, csv_agent_chain, path="/csv-agent")
```

(Optional) Let's now configure LangSmith. 
LangSmith will help us trace, monitor and debug LangChain applications. 
You can sign up for LangSmith [here](https://smith.langchain.com/). 
If you don't have access, you can skip this section


```shell
export LANGCHAIN_TRACING_V2=true
export LANGCHAIN_API_KEY=<your-api-key>
export LANGCHAIN_PROJECT=<your-project>  # if not specified, defaults to "default"
```

If you are inside this directory, then you can spin up a LangServe instance directly by:

```shell
langchain serve
```

This will start the FastAPI app with a server is running locally at 
[http://localhost:8000](http://localhost:8000)

We can see all templates at [http://127.0.0.1:8000/docs](http://127.0.0.1:8000/docs)
We can access the playground at [http://127.0.0.1:8000/csv-agent/playground](http://127.0.0.1:8000/csv-agent/playground)  

We can access the template from code with:

```python
from langserve.client import RemoteRunnable

runnable = RemoteRunnable("http://localhost:8000/csv-agent")
```