Spaces:
Runtime error
Runtime error
File size: 5,720 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 |
import traceback
from pathlib import Path
from typing import Any, Dict, List, Union
from .core import (
Frontmatter,
InvokerFactory,
ModelSettings,
Prompty,
PropertySettings,
SimpleModel,
TemplateSettings,
param_hoisting,
)
def load(prompt_path: str, configuration: str = "default") -> Prompty:
file_path = Path(prompt_path)
if not file_path.is_absolute():
# get caller's path (take into account trace frame)
caller = Path(traceback.extract_stack()[-3].filename)
file_path = Path(caller.parent / file_path).resolve().absolute()
# load dictionary from prompty file
matter = Frontmatter.read_file(file_path.__fspath__())
attributes = matter["attributes"]
content = matter["body"]
# normalize attribute dictionary resolve keys and files
attributes = Prompty.normalize(attributes, file_path.parent)
# load global configuration
if "model" not in attributes:
attributes["model"] = {}
# pull model settings out of attributes
try:
model = ModelSettings(**attributes.pop("model"))
except Exception as e:
raise ValueError(f"Error in model settings: {e}")
# pull template settings
try:
if "template" in attributes:
t = attributes.pop("template")
if isinstance(t, dict):
template = TemplateSettings(**t)
# has to be a string denoting the type
else:
template = TemplateSettings(type=t, parser="prompty")
else:
template = TemplateSettings(type="mustache", parser="prompty")
except Exception as e:
raise ValueError(f"Error in template loader: {e}")
# formalize inputs and outputs
if "inputs" in attributes:
try:
inputs = {
k: PropertySettings(**v) for (k, v) in attributes.pop("inputs").items()
}
except Exception as e:
raise ValueError(f"Error in inputs: {e}")
else:
inputs = {}
if "outputs" in attributes:
try:
outputs = {
k: PropertySettings(**v) for (k, v) in attributes.pop("outputs").items()
}
except Exception as e:
raise ValueError(f"Error in outputs: {e}")
else:
outputs = {}
# recursive loading of base prompty
if "base" in attributes:
# load the base prompty from the same directory as the current prompty
base = load(file_path.parent / attributes["base"])
# hoist the base prompty's attributes to the current prompty
model.api = base.model.api if model.api == "" else model.api
model.configuration = param_hoisting(
model.configuration, base.model.configuration
)
model.parameters = param_hoisting(model.parameters, base.model.parameters)
model.response = param_hoisting(model.response, base.model.response)
attributes["sample"] = param_hoisting(attributes, base.sample, "sample")
p = Prompty(
**attributes,
model=model,
inputs=inputs,
outputs=outputs,
template=template,
content=content,
file=file_path,
basePrompty=base,
)
else:
p = Prompty(
**attributes,
model=model,
inputs=inputs,
outputs=outputs,
template=template,
content=content,
file=file_path,
)
return p
def prepare(
prompt: Prompty,
inputs: Dict[str, Any] = {},
) -> Any:
invoker = InvokerFactory()
inputs = param_hoisting(inputs, prompt.sample)
if prompt.template.type == "NOOP":
render = prompt.content
else:
# render
result = invoker(
"renderer",
prompt.template.type,
prompt,
SimpleModel(item=inputs),
)
render = result.item
if prompt.template.parser == "NOOP":
result = render
else:
# parse
result = invoker(
"parser",
f"{prompt.template.parser}.{prompt.model.api}",
prompt,
SimpleModel(item=result.item),
)
if isinstance(result, SimpleModel):
return result.item
else:
return result
def run(
prompt: Prompty,
content: Union[Dict, List, str],
configuration: Dict[str, Any] = {},
parameters: Dict[str, Any] = {},
raw: bool = False,
) -> Any:
invoker = InvokerFactory()
if configuration != {}:
prompt.model.configuration = param_hoisting(
configuration, prompt.model.configuration
)
if parameters != {}:
prompt.model.parameters = param_hoisting(parameters, prompt.model.parameters)
# execute
result = invoker(
"executor",
prompt.model.configuration["type"],
prompt,
SimpleModel(item=content),
)
# skip?
if not raw:
# process
result = invoker(
"processor",
prompt.model.configuration["type"],
prompt,
result,
)
if isinstance(result, SimpleModel):
return result.item
else:
return result
def execute(
prompt: Union[str, Prompty],
configuration: Dict[str, Any] = {},
parameters: Dict[str, Any] = {},
inputs: Dict[str, Any] = {},
raw: bool = False,
connection: str = "default",
) -> Any:
if isinstance(prompt, str):
prompt = load(prompt, connection)
# prepare content
content = prepare(prompt, inputs)
# run LLM model
result = run(prompt, content, configuration, parameters, raw)
return result
|