Spaces:
Runtime error
Runtime error
File size: 24,651 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 |
from __future__ import annotations
import logging
import os
import sys
from typing import (
AbstractSet,
Any,
AsyncIterator,
Collection,
Dict,
Iterator,
List,
Literal,
Mapping,
Optional,
Set,
Tuple,
Union,
)
import openai
import tiktoken
from langchain_core.callbacks import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import BaseLLM
from langchain_core.outputs import Generation, GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils import (
convert_to_secret_str,
get_from_dict_or_env,
get_pydantic_field_names,
)
from langchain_core.utils.utils import build_extra_kwargs
logger = logging.getLogger(__name__)
def _update_token_usage(
keys: Set[str], response: Dict[str, Any], token_usage: Dict[str, Any]
) -> None:
"""Update token usage."""
_keys_to_use = keys.intersection(response["usage"])
for _key in _keys_to_use:
if _key not in token_usage:
token_usage[_key] = response["usage"][_key]
else:
token_usage[_key] += response["usage"][_key]
def _stream_response_to_generation_chunk(
stream_response: Dict[str, Any],
) -> GenerationChunk:
"""Convert a stream response to a generation chunk."""
if not stream_response["choices"]:
return GenerationChunk(text="")
return GenerationChunk(
text=stream_response["choices"][0]["text"],
generation_info=dict(
finish_reason=stream_response["choices"][0].get("finish_reason", None),
logprobs=stream_response["choices"][0].get("logprobs", None),
),
)
class BaseOpenAI(BaseLLM):
"""Base OpenAI large language model class."""
client: Any = Field(default=None, exclude=True) #: :meta private:
async_client: Any = Field(default=None, exclude=True) #: :meta private:
model_name: str = Field(default="gpt-3.5-turbo-instruct", alias="model")
"""Model name to use."""
temperature: float = 0.7
"""What sampling temperature to use."""
max_tokens: int = 256
"""The maximum number of tokens to generate in the completion.
-1 returns as many tokens as possible given the prompt and
the models maximal context size."""
top_p: float = 1
"""Total probability mass of tokens to consider at each step."""
frequency_penalty: float = 0
"""Penalizes repeated tokens according to frequency."""
presence_penalty: float = 0
"""Penalizes repeated tokens."""
n: int = 1
"""How many completions to generate for each prompt."""
best_of: int = 1
"""Generates best_of completions server-side and returns the "best"."""
model_kwargs: Dict[str, Any] = Field(default_factory=dict)
"""Holds any model parameters valid for `create` call not explicitly specified."""
openai_api_key: Optional[SecretStr] = Field(default=None, alias="api_key")
"""Automatically inferred from env var `OPENAI_API_KEY` if not provided."""
openai_api_base: Optional[str] = Field(default=None, alias="base_url")
"""Base URL path for API requests, leave blank if not using a proxy or service
emulator."""
openai_organization: Optional[str] = Field(default=None, alias="organization")
"""Automatically inferred from env var `OPENAI_ORG_ID` if not provided."""
# to support explicit proxy for OpenAI
openai_proxy: Optional[str] = None
batch_size: int = 20
"""Batch size to use when passing multiple documents to generate."""
request_timeout: Union[float, Tuple[float, float], Any, None] = Field(
default=None, alias="timeout"
)
"""Timeout for requests to OpenAI completion API. Can be float, httpx.Timeout or
None."""
logit_bias: Optional[Dict[str, float]] = Field(default_factory=dict)
"""Adjust the probability of specific tokens being generated."""
max_retries: int = 2
"""Maximum number of retries to make when generating."""
streaming: bool = False
"""Whether to stream the results or not."""
allowed_special: Union[Literal["all"], AbstractSet[str]] = set()
"""Set of special tokens that are allowed。"""
disallowed_special: Union[Literal["all"], Collection[str]] = "all"
"""Set of special tokens that are not allowed。"""
tiktoken_model_name: Optional[str] = None
"""The model name to pass to tiktoken when using this class.
Tiktoken is used to count the number of tokens in documents to constrain
them to be under a certain limit. By default, when set to None, this will
be the same as the embedding model name. However, there are some cases
where you may want to use this Embedding class with a model name not
supported by tiktoken. This can include when using Azure embeddings or
when using one of the many model providers that expose an OpenAI-like
API but with different models. In those cases, in order to avoid erroring
when tiktoken is called, you can specify a model name to use here."""
default_headers: Union[Mapping[str, str], None] = None
default_query: Union[Mapping[str, object], None] = None
# Configure a custom httpx client. See the
# [httpx documentation](https://www.python-httpx.org/api/#client) for more details.
http_client: Union[Any, None] = None
"""Optional httpx.Client. Only used for sync invocations. Must specify
http_async_client as well if you'd like a custom client for async invocations.
"""
http_async_client: Union[Any, None] = None
"""Optional httpx.AsyncClient. Only used for async invocations. Must specify
http_client as well if you'd like a custom client for sync invocations."""
class Config:
"""Configuration for this pydantic object."""
allow_population_by_field_name = True
@root_validator(pre=True)
def build_extra(cls, values: Dict[str, Any]) -> Dict[str, Any]:
"""Build extra kwargs from additional params that were passed in."""
all_required_field_names = get_pydantic_field_names(cls)
extra = values.get("model_kwargs", {})
values["model_kwargs"] = build_extra_kwargs(
extra, values, all_required_field_names
)
return values
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate that api key and python package exists in environment."""
if values["n"] < 1:
raise ValueError("n must be at least 1.")
if values["streaming"] and values["n"] > 1:
raise ValueError("Cannot stream results when n > 1.")
if values["streaming"] and values["best_of"] > 1:
raise ValueError("Cannot stream results when best_of > 1.")
openai_api_key = get_from_dict_or_env(
values, "openai_api_key", "OPENAI_API_KEY"
)
values["openai_api_key"] = (
convert_to_secret_str(openai_api_key) if openai_api_key else None
)
values["openai_api_base"] = values["openai_api_base"] or os.getenv(
"OPENAI_API_BASE"
)
values["openai_proxy"] = get_from_dict_or_env(
values,
"openai_proxy",
"OPENAI_PROXY",
default="",
)
values["openai_organization"] = (
values["openai_organization"]
or os.getenv("OPENAI_ORG_ID")
or os.getenv("OPENAI_ORGANIZATION")
)
client_params = {
"api_key": (
values["openai_api_key"].get_secret_value()
if values["openai_api_key"]
else None
),
"organization": values["openai_organization"],
"base_url": values["openai_api_base"],
"timeout": values["request_timeout"],
"max_retries": values["max_retries"],
"default_headers": values["default_headers"],
"default_query": values["default_query"],
}
if not values.get("client"):
sync_specific = {"http_client": values["http_client"]}
values["client"] = openai.OpenAI(
**client_params, **sync_specific
).completions
if not values.get("async_client"):
async_specific = {"http_client": values["http_async_client"]}
values["async_client"] = openai.AsyncOpenAI(
**client_params, **async_specific
).completions
return values
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling OpenAI API."""
normal_params: Dict[str, Any] = {
"temperature": self.temperature,
"top_p": self.top_p,
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"n": self.n,
"logit_bias": self.logit_bias,
}
if self.max_tokens is not None:
normal_params["max_tokens"] = self.max_tokens
# Azure gpt-35-turbo doesn't support best_of
# don't specify best_of if it is 1
if self.best_of > 1:
normal_params["best_of"] = self.best_of
return {**normal_params, **self.model_kwargs}
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = {**self._invocation_params, **kwargs, "stream": True}
self.get_sub_prompts(params, [prompt], stop) # this mutates params
for stream_resp in self.client.create(prompt=prompt, **params):
if not isinstance(stream_resp, dict):
stream_resp = stream_resp.model_dump()
chunk = _stream_response_to_generation_chunk(stream_resp)
if run_manager:
run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
logprobs=(
chunk.generation_info["logprobs"]
if chunk.generation_info
else None
),
)
yield chunk
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
params = {**self._invocation_params, **kwargs, "stream": True}
self.get_sub_prompts(params, [prompt], stop) # this mutates params
async for stream_resp in await self.async_client.create(
prompt=prompt, **params
):
if not isinstance(stream_resp, dict):
stream_resp = stream_resp.model_dump()
chunk = _stream_response_to_generation_chunk(stream_resp)
if run_manager:
await run_manager.on_llm_new_token(
chunk.text,
chunk=chunk,
verbose=self.verbose,
logprobs=(
chunk.generation_info["logprobs"]
if chunk.generation_info
else None
),
)
yield chunk
def _generate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call out to OpenAI's endpoint with k unique prompts.
Args:
prompts: The prompts to pass into the model.
stop: Optional list of stop words to use when generating.
Returns:
The full LLM output.
Example:
.. code-block:: python
response = openai.generate(["Tell me a joke."])
"""
# TODO: write a unit test for this
params = self._invocation_params
params = {**params, **kwargs}
sub_prompts = self.get_sub_prompts(params, prompts, stop)
choices = []
token_usage: Dict[str, int] = {}
# Get the token usage from the response.
# Includes prompt, completion, and total tokens used.
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
system_fingerprint: Optional[str] = None
for _prompts in sub_prompts:
if self.streaming:
if len(_prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
generation: Optional[GenerationChunk] = None
for chunk in self._stream(_prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
choices.append(
{
"text": generation.text,
"finish_reason": (
generation.generation_info.get("finish_reason")
if generation.generation_info
else None
),
"logprobs": (
generation.generation_info.get("logprobs")
if generation.generation_info
else None
),
}
)
else:
response = self.client.create(prompt=_prompts, **params)
if not isinstance(response, dict):
# V1 client returns the response in an PyDantic object instead of
# dict. For the transition period, we deep convert it to dict.
response = response.model_dump()
# Sometimes the AI Model calling will get error, we should raise it.
# Otherwise, the next code 'choices.extend(response["choices"])'
# will throw a "TypeError: 'NoneType' object is not iterable" error
# to mask the true error. Because 'response["choices"]' is None.
if response.get("error"):
raise ValueError(response.get("error"))
choices.extend(response["choices"])
_update_token_usage(_keys, response, token_usage)
if not system_fingerprint:
system_fingerprint = response.get("system_fingerprint")
return self.create_llm_result(
choices,
prompts,
params,
token_usage,
system_fingerprint=system_fingerprint,
)
async def _agenerate(
self,
prompts: List[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call out to OpenAI's endpoint async with k unique prompts."""
params = self._invocation_params
params = {**params, **kwargs}
sub_prompts = self.get_sub_prompts(params, prompts, stop)
choices = []
token_usage: Dict[str, int] = {}
# Get the token usage from the response.
# Includes prompt, completion, and total tokens used.
_keys = {"completion_tokens", "prompt_tokens", "total_tokens"}
system_fingerprint: Optional[str] = None
for _prompts in sub_prompts:
if self.streaming:
if len(_prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
generation: Optional[GenerationChunk] = None
async for chunk in self._astream(
_prompts[0], stop, run_manager, **kwargs
):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
choices.append(
{
"text": generation.text,
"finish_reason": (
generation.generation_info.get("finish_reason")
if generation.generation_info
else None
),
"logprobs": (
generation.generation_info.get("logprobs")
if generation.generation_info
else None
),
}
)
else:
response = await self.async_client.create(prompt=_prompts, **params)
if not isinstance(response, dict):
response = response.model_dump()
choices.extend(response["choices"])
_update_token_usage(_keys, response, token_usage)
return self.create_llm_result(
choices,
prompts,
params,
token_usage,
system_fingerprint=system_fingerprint,
)
def get_sub_prompts(
self,
params: Dict[str, Any],
prompts: List[str],
stop: Optional[List[str]] = None,
) -> List[List[str]]:
"""Get the sub prompts for llm call."""
if stop is not None:
if "stop" in params:
raise ValueError("`stop` found in both the input and default params.")
params["stop"] = stop
if params["max_tokens"] == -1:
if len(prompts) != 1:
raise ValueError(
"max_tokens set to -1 not supported for multiple inputs."
)
params["max_tokens"] = self.max_tokens_for_prompt(prompts[0])
sub_prompts = [
prompts[i : i + self.batch_size]
for i in range(0, len(prompts), self.batch_size)
]
return sub_prompts
def create_llm_result(
self,
choices: Any,
prompts: List[str],
params: Dict[str, Any],
token_usage: Dict[str, int],
*,
system_fingerprint: Optional[str] = None,
) -> LLMResult:
"""Create the LLMResult from the choices and prompts."""
generations = []
n = params.get("n", self.n)
for i, _ in enumerate(prompts):
sub_choices = choices[i * n : (i + 1) * n]
generations.append(
[
Generation(
text=choice["text"],
generation_info=dict(
finish_reason=choice.get("finish_reason"),
logprobs=choice.get("logprobs"),
),
)
for choice in sub_choices
]
)
llm_output = {"token_usage": token_usage, "model_name": self.model_name}
if system_fingerprint:
llm_output["system_fingerprint"] = system_fingerprint
return LLMResult(generations=generations, llm_output=llm_output)
@property
def _invocation_params(self) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
return self._default_params
@property
def _identifying_params(self) -> Mapping[str, Any]:
"""Get the identifying parameters."""
return {**{"model_name": self.model_name}, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "openai"
def get_token_ids(self, text: str) -> List[int]:
"""Get the token IDs using the tiktoken package."""
if self.custom_get_token_ids is not None:
return self.custom_get_token_ids(text)
# tiktoken NOT supported for Python < 3.8
if sys.version_info[1] < 8:
return super().get_num_tokens(text)
model_name = self.tiktoken_model_name or self.model_name
try:
enc = tiktoken.encoding_for_model(model_name)
except KeyError:
enc = tiktoken.get_encoding("cl100k_base")
return enc.encode(
text,
allowed_special=self.allowed_special,
disallowed_special=self.disallowed_special,
)
@staticmethod
def modelname_to_contextsize(modelname: str) -> int:
"""Calculate the maximum number of tokens possible to generate for a model.
Args:
modelname: The modelname we want to know the context size for.
Returns:
The maximum context size
Example:
.. code-block:: python
max_tokens = openai.modelname_to_contextsize("gpt-3.5-turbo-instruct")
"""
model_token_mapping = {
"gpt-4o": 128_000,
"gpt-4o-2024-05-13": 128_000,
"gpt-4": 8192,
"gpt-4-0314": 8192,
"gpt-4-0613": 8192,
"gpt-4-32k": 32768,
"gpt-4-32k-0314": 32768,
"gpt-4-32k-0613": 32768,
"gpt-3.5-turbo": 4096,
"gpt-3.5-turbo-0301": 4096,
"gpt-3.5-turbo-0613": 4096,
"gpt-3.5-turbo-16k": 16385,
"gpt-3.5-turbo-16k-0613": 16385,
"gpt-3.5-turbo-instruct": 4096,
"text-ada-001": 2049,
"ada": 2049,
"text-babbage-001": 2040,
"babbage": 2049,
"text-curie-001": 2049,
"curie": 2049,
"davinci": 2049,
"text-davinci-003": 4097,
"text-davinci-002": 4097,
"code-davinci-002": 8001,
"code-davinci-001": 8001,
"code-cushman-002": 2048,
"code-cushman-001": 2048,
}
# handling finetuned models
if "ft-" in modelname:
modelname = modelname.split(":")[0]
context_size = model_token_mapping.get(modelname, None)
if context_size is None:
raise ValueError(
f"Unknown model: {modelname}. Please provide a valid OpenAI model name."
"Known models are: " + ", ".join(model_token_mapping.keys())
)
return context_size
@property
def max_context_size(self) -> int:
"""Get max context size for this model."""
return self.modelname_to_contextsize(self.model_name)
def max_tokens_for_prompt(self, prompt: str) -> int:
"""Calculate the maximum number of tokens possible to generate for a prompt.
Args:
prompt: The prompt to pass into the model.
Returns:
The maximum number of tokens to generate for a prompt.
Example:
.. code-block:: python
max_tokens = openai.max_token_for_prompt("Tell me a joke.")
"""
num_tokens = self.get_num_tokens(prompt)
return self.max_context_size - num_tokens
class OpenAI(BaseOpenAI):
"""OpenAI large language models.
To use, you should have the environment variable ``OPENAI_API_KEY``
set with your API key, or pass it as a named parameter to the constructor.
Any parameters that are valid to be passed to the openai.create call can be passed
in, even if not explicitly saved on this class.
Example:
.. code-block:: python
from langchain_openai import OpenAI
model = OpenAI(model_name="gpt-3.5-turbo-instruct")
"""
@classmethod
def get_lc_namespace(cls) -> List[str]:
"""Get the namespace of the langchain object."""
return ["langchain", "llms", "openai"]
@classmethod
def is_lc_serializable(cls) -> bool:
"""Return whether this model can be serialized by Langchain."""
return True
@property
def _invocation_params(self) -> Dict[str, Any]:
return {**{"model": self.model_name}, **super()._invocation_params}
@property
def lc_secrets(self) -> Dict[str, str]:
return {"openai_api_key": "OPENAI_API_KEY"}
@property
def lc_attributes(self) -> Dict[str, Any]:
attributes: Dict[str, Any] = {}
if self.openai_api_base:
attributes["openai_api_base"] = self.openai_api_base
if self.openai_organization:
attributes["openai_organization"] = self.openai_organization
if self.openai_proxy:
attributes["openai_proxy"] = self.openai_proxy
return attributes
|