File size: 6,605 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from functools import partial
from typing import Any, Dict, List, Mapping, Optional, Set

from langchain_core.callbacks import CallbackManagerForLLMRun
from langchain_core.language_models.llms import LLM
from langchain_core.pydantic_v1 import Extra, Field, root_validator

from langchain_community.llms.utils import enforce_stop_tokens


class GPT4All(LLM):
    """GPT4All language models.

    To use, you should have the ``gpt4all`` python package installed, the
    pre-trained model file, and the model's config information.

    Example:
        .. code-block:: python

            from langchain_community.llms import GPT4All
            model = GPT4All(model="./models/gpt4all-model.bin", n_threads=8)

            # Simplest invocation
            response = model.invoke("Once upon a time, ")
    """

    model: str
    """Path to the pre-trained GPT4All model file."""

    backend: Optional[str] = Field(None, alias="backend")

    max_tokens: int = Field(200, alias="max_tokens")
    """Token context window."""

    n_parts: int = Field(-1, alias="n_parts")
    """Number of parts to split the model into. 
    If -1, the number of parts is automatically determined."""

    seed: int = Field(0, alias="seed")
    """Seed. If -1, a random seed is used."""

    f16_kv: bool = Field(False, alias="f16_kv")
    """Use half-precision for key/value cache."""

    logits_all: bool = Field(False, alias="logits_all")
    """Return logits for all tokens, not just the last token."""

    vocab_only: bool = Field(False, alias="vocab_only")
    """Only load the vocabulary, no weights."""

    use_mlock: bool = Field(False, alias="use_mlock")
    """Force system to keep model in RAM."""

    embedding: bool = Field(False, alias="embedding")
    """Use embedding mode only."""

    n_threads: Optional[int] = Field(4, alias="n_threads")
    """Number of threads to use."""

    n_predict: Optional[int] = 256
    """The maximum number of tokens to generate."""

    temp: Optional[float] = 0.7
    """The temperature to use for sampling."""

    top_p: Optional[float] = 0.1
    """The top-p value to use for sampling."""

    top_k: Optional[int] = 40
    """The top-k value to use for sampling."""

    echo: Optional[bool] = False
    """Whether to echo the prompt."""

    stop: Optional[List[str]] = []
    """A list of strings to stop generation when encountered."""

    repeat_last_n: Optional[int] = 64
    "Last n tokens to penalize"

    repeat_penalty: Optional[float] = 1.18
    """The penalty to apply to repeated tokens."""

    n_batch: int = Field(8, alias="n_batch")
    """Batch size for prompt processing."""

    streaming: bool = False
    """Whether to stream the results or not."""

    allow_download: bool = False
    """If model does not exist in ~/.cache/gpt4all/, download it."""

    device: Optional[str] = Field("cpu", alias="device")
    """Device name: cpu, gpu, nvidia, intel, amd or DeviceName."""

    client: Any = None  #: :meta private:

    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @staticmethod
    def _model_param_names() -> Set[str]:
        return {
            "max_tokens",
            "n_predict",
            "top_k",
            "top_p",
            "temp",
            "n_batch",
            "repeat_penalty",
            "repeat_last_n",
            "streaming",
        }

    def _default_params(self) -> Dict[str, Any]:
        return {
            "max_tokens": self.max_tokens,
            "n_predict": self.n_predict,
            "top_k": self.top_k,
            "top_p": self.top_p,
            "temp": self.temp,
            "n_batch": self.n_batch,
            "repeat_penalty": self.repeat_penalty,
            "repeat_last_n": self.repeat_last_n,
            "streaming": self.streaming,
        }

    @root_validator()
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that the python package exists in the environment."""
        try:
            from gpt4all import GPT4All as GPT4AllModel
        except ImportError:
            raise ImportError(
                "Could not import gpt4all python package. "
                "Please install it with `pip install gpt4all`."
            )

        full_path = values["model"]
        model_path, delimiter, model_name = full_path.rpartition("/")
        model_path += delimiter

        values["client"] = GPT4AllModel(
            model_name,
            model_path=model_path or None,
            model_type=values["backend"],
            allow_download=values["allow_download"],
            device=values["device"],
        )
        if values["n_threads"] is not None:
            # set n_threads
            values["client"].model.set_thread_count(values["n_threads"])

        try:
            values["backend"] = values["client"].model_type
        except AttributeError:
            # The below is for compatibility with GPT4All Python bindings <= 0.2.3.
            values["backend"] = values["client"].model.model_type

        return values

    @property
    def _identifying_params(self) -> Mapping[str, Any]:
        """Get the identifying parameters."""
        return {
            "model": self.model,
            **self._default_params(),
            **{
                k: v for k, v in self.__dict__.items() if k in self._model_param_names()
            },
        }

    @property
    def _llm_type(self) -> str:
        """Return the type of llm."""
        return "gpt4all"

    def _call(
        self,
        prompt: str,
        stop: Optional[List[str]] = None,
        run_manager: Optional[CallbackManagerForLLMRun] = None,
        **kwargs: Any,
    ) -> str:
        r"""Call out to GPT4All's generate method.

        Args:
            prompt: The prompt to pass into the model.
            stop: A list of strings to stop generation when encountered.

        Returns:
            The string generated by the model.

        Example:
            .. code-block:: python

                prompt = "Once upon a time, "
                response = model.invoke(prompt, n_predict=55)
        """
        text_callback = None
        if run_manager:
            text_callback = partial(run_manager.on_llm_new_token, verbose=self.verbose)
        text = ""
        params = {**self._default_params(), **kwargs}
        for token in self.client.generate(prompt, **params):
            if text_callback:
                text_callback(token)
            text += token
        if stop is not None:
            text = enforce_stop_tokens(text, stop)
        return text