Spaces:
Runtime error
Runtime error
File size: 14,570 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 |
from __future__ import annotations
import os
from typing import Any, AsyncIterator, Dict, Iterator, List, Optional
from langchain_core.callbacks.manager import (
AsyncCallbackManagerForLLMRun,
CallbackManagerForLLMRun,
)
from langchain_core.language_models.llms import LLM
from langchain_core.load.serializable import Serializable
from langchain_core.outputs import GenerationChunk, LLMResult
from langchain_core.pydantic_v1 import Field, SecretStr, root_validator
from langchain_core.utils.env import get_from_dict_or_env
from langchain_core.utils.utils import convert_to_secret_str
def _stream_response_to_generation_chunk(stream_response: Any) -> GenerationChunk:
"""Convert a stream response to a generation chunk."""
if stream_response.event == "token_sampled":
return GenerationChunk(
text=stream_response.text,
generation_info={"token": str(stream_response.token)},
)
return GenerationChunk(text="")
class BaseFriendli(Serializable):
"""Base class of Friendli."""
# Friendli client.
client: Any = Field(default=None, exclude=True)
# Friendli Async client.
async_client: Any = Field(default=None, exclude=True)
# Model name to use.
model: str = "mixtral-8x7b-instruct-v0-1"
# Friendli personal access token to run as.
friendli_token: Optional[SecretStr] = None
# Friendli team ID to run as.
friendli_team: Optional[str] = None
# Whether to enable streaming mode.
streaming: bool = False
# Number between -2.0 and 2.0. Positive values penalizes tokens that have been
# sampled, taking into account their frequency in the preceding text. This
# penalization diminishes the model's tendency to reproduce identical lines
# verbatim.
frequency_penalty: Optional[float] = None
# Number between -2.0 and 2.0. Positive values penalizes tokens that have been
# sampled at least once in the existing text.
presence_penalty: Optional[float] = None
# The maximum number of tokens to generate. The length of your input tokens plus
# `max_tokens` should not exceed the model's maximum length (e.g., 2048 for OpenAI
# GPT-3)
max_tokens: Optional[int] = None
# When one of the stop phrases appears in the generation result, the API will stop
# generation. The phrase is included in the generated result. If you are using
# beam search, all of the active beams should contain the stop phrase to terminate
# generation. Before checking whether a stop phrase is included in the result, the
# phrase is converted into tokens.
stop: Optional[List[str]] = None
# Sampling temperature. Smaller temperature makes the generation result closer to
# greedy, argmax (i.e., `top_k = 1`) sampling. If it is `None`, then 1.0 is used.
temperature: Optional[float] = None
# Tokens comprising the top `top_p` probability mass are kept for sampling. Numbers
# between 0.0 (exclusive) and 1.0 (inclusive) are allowed. If it is `None`, then 1.0
# is used by default.
top_p: Optional[float] = None
@root_validator()
def validate_environment(cls, values: Dict) -> Dict:
"""Validate if personal access token is provided in environment."""
try:
import friendli
except ImportError as e:
raise ImportError(
"Could not import friendli-client python package. "
"Please install it with `pip install friendli-client`."
) from e
friendli_token = convert_to_secret_str(
get_from_dict_or_env(values, "friendli_token", "FRIENDLI_TOKEN")
)
values["friendli_token"] = friendli_token
friendli_token_str = friendli_token.get_secret_value()
friendli_team = values["friendli_team"] or os.getenv("FRIENDLI_TEAM")
values["friendli_team"] = friendli_team
values["client"] = values["client"] or friendli.Friendli(
token=friendli_token_str, team_id=friendli_team
)
values["async_client"] = values["async_client"] or friendli.AsyncFriendli(
token=friendli_token_str, team_id=friendli_team
)
return values
class Friendli(LLM, BaseFriendli):
"""Friendli LLM.
``friendli-client`` package should be installed with `pip install friendli-client`.
You must set ``FRIENDLI_TOKEN`` environment variable or provide the value of your
personal access token for the ``friendli_token`` argument.
Example:
.. code-block:: python
from langchain_community.llms import Friendli
friendli = Friendli(
model="mixtral-8x7b-instruct-v0-1", friendli_token="YOUR FRIENDLI TOKEN"
)
"""
@property
def lc_secrets(self) -> Dict[str, str]:
return {"friendli_token": "FRIENDLI_TOKEN"}
@property
def _default_params(self) -> Dict[str, Any]:
"""Get the default parameters for calling Friendli completions API."""
return {
"frequency_penalty": self.frequency_penalty,
"presence_penalty": self.presence_penalty,
"max_tokens": self.max_tokens,
"stop": self.stop,
"temperature": self.temperature,
"top_p": self.top_p,
}
@property
def _identifying_params(self) -> Dict[str, Any]:
"""Get the identifying parameters."""
return {"model": self.model, **self._default_params}
@property
def _llm_type(self) -> str:
"""Return type of llm."""
return "friendli"
def _get_invocation_params(
self, stop: Optional[List[str]] = None, **kwargs: Any
) -> Dict[str, Any]:
"""Get the parameters used to invoke the model."""
params = self._default_params
if self.stop is not None and stop is not None:
raise ValueError("`stop` found in both the input and default params.")
elif self.stop is not None:
params["stop"] = self.stop
else:
params["stop"] = stop
return {**params, **kwargs}
def _call(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out Friendli's completions API.
Args:
prompt (str): The text prompt to generate completion for.
stop (Optional[List[str]], optional): When one of the stop phrases appears
in the generation result, the API will stop generation. The stop phrases
are excluded from the result. If beam search is enabled, all of the
active beams should contain the stop phrase to terminate generation.
Before checking whether a stop phrase is included in the result, the
phrase is converted into tokens. We recommend using stop_tokens because
it is clearer. For example, after tokenization, phrases "clear" and
" clear" can result in different token sequences due to the prepended
space character. Defaults to None.
Returns:
str: The generated text output.
Example:
.. code-block:: python
response = frienldi("Give me a recipe for the Old Fashioned cocktail.")
"""
params = self._get_invocation_params(stop=stop, **kwargs)
completion = self.client.completions.create(
model=self.model, prompt=prompt, stream=False, **params
)
return completion.choices[0].text
async def _acall(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> str:
"""Call out Friendli's completions API Asynchronously.
Args:
prompt (str): The text prompt to generate completion for.
stop (Optional[List[str]], optional): When one of the stop phrases appears
in the generation result, the API will stop generation. The stop phrases
are excluded from the result. If beam search is enabled, all of the
active beams should contain the stop phrase to terminate generation.
Before checking whether a stop phrase is included in the result, the
phrase is converted into tokens. We recommend using stop_tokens because
it is clearer. For example, after tokenization, phrases "clear" and
" clear" can result in different token sequences due to the prepended
space character. Defaults to None.
Returns:
str: The generated text output.
Example:
.. code-block:: python
response = await frienldi("Tell me a joke.")
"""
params = self._get_invocation_params(stop=stop, **kwargs)
completion = await self.async_client.completions.create(
model=self.model, prompt=prompt, stream=False, **params
)
return completion.choices[0].text
def _stream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> Iterator[GenerationChunk]:
params = self._get_invocation_params(stop=stop, **kwargs)
stream = self.client.completions.create(
model=self.model, prompt=prompt, stream=True, **params
)
for line in stream:
chunk = _stream_response_to_generation_chunk(line)
yield chunk
if run_manager:
run_manager.on_llm_new_token(line.text, chunk=chunk)
async def _astream(
self,
prompt: str,
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> AsyncIterator[GenerationChunk]:
params = self._get_invocation_params(stop=stop, **kwargs)
stream = await self.async_client.completions.create(
model=self.model, prompt=prompt, stream=True, **params
)
async for line in stream:
chunk = _stream_response_to_generation_chunk(line)
yield chunk
if run_manager:
await run_manager.on_llm_new_token(line.text, chunk=chunk)
def _generate(
self,
prompts: list[str],
stop: Optional[List[str]] = None,
run_manager: Optional[CallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call out Friendli's completions API with k unique prompts.
Args:
prompt (str): The text prompt to generate completion for.
stop (Optional[List[str]], optional): When one of the stop phrases appears
in the generation result, the API will stop generation. The stop phrases
are excluded from the result. If beam search is enabled, all of the
active beams should contain the stop phrase to terminate generation.
Before checking whether a stop phrase is included in the result, the
phrase is converted into tokens. We recommend using stop_tokens because
it is clearer. For example, after tokenization, phrases "clear" and
" clear" can result in different token sequences due to the prepended
space character. Defaults to None.
Returns:
str: The generated text output.
Example:
.. code-block:: python
response = frienldi.generate(["Tell me a joke."])
"""
llm_output = {"model": self.model}
if self.streaming:
if len(prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
generation: Optional[GenerationChunk] = None
for chunk in self._stream(prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]], llm_output=llm_output)
llm_result = super()._generate(prompts, stop, run_manager, **kwargs)
llm_result.llm_output = llm_output
return llm_result
async def _agenerate(
self,
prompts: list[str],
stop: Optional[List[str]] = None,
run_manager: Optional[AsyncCallbackManagerForLLMRun] = None,
**kwargs: Any,
) -> LLMResult:
"""Call out Friendli's completions API asynchronously with k unique prompts.
Args:
prompt (str): The text prompt to generate completion for.
stop (Optional[List[str]], optional): When one of the stop phrases appears
in the generation result, the API will stop generation. The stop phrases
are excluded from the result. If beam search is enabled, all of the
active beams should contain the stop phrase to terminate generation.
Before checking whether a stop phrase is included in the result, the
phrase is converted into tokens. We recommend using stop_tokens because
it is clearer. For example, after tokenization, phrases "clear" and
" clear" can result in different token sequences due to the prepended
space character. Defaults to None.
Returns:
str: The generated text output.
Example:
.. code-block:: python
response = await frienldi.agenerate(
["Give me a recipe for the Old Fashioned cocktail."]
)
"""
llm_output = {"model": self.model}
if self.streaming:
if len(prompts) > 1:
raise ValueError("Cannot stream results with multiple prompts.")
generation = None
async for chunk in self._astream(prompts[0], stop, run_manager, **kwargs):
if generation is None:
generation = chunk
else:
generation += chunk
assert generation is not None
return LLMResult(generations=[[generation]], llm_output=llm_output)
llm_result = await super()._agenerate(prompts, stop, run_manager, **kwargs)
llm_result.llm_output = llm_output
return llm_result
|