File size: 10,285 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
"""written under MIT Licence, Michael Feil 2023."""

import asyncio
from concurrent.futures import ThreadPoolExecutor
from typing import Any, Callable, Dict, List, Optional, Tuple

import aiohttp
import numpy as np
import requests
from langchain_core.embeddings import Embeddings
from langchain_core.pydantic_v1 import BaseModel, Extra, root_validator
from langchain_core.utils import get_from_dict_or_env

__all__ = ["InfinityEmbeddings"]


class InfinityEmbeddings(BaseModel, Embeddings):
    """Self-hosted embedding models for `infinity` package.

    See https://github.com/michaelfeil/infinity
    This also works for text-embeddings-inference and other
    self-hosted openai-compatible servers.

    Infinity is a package to interact with Embedding Models on https://github.com/michaelfeil/infinity


    Example:
        .. code-block:: python

            from langchain_community.embeddings import InfinityEmbeddings
            InfinityEmbeddings(
                model="BAAI/bge-small",
                infinity_api_url="http://localhost:7997",
            )
    """

    model: str
    "Underlying Infinity model id."

    infinity_api_url: str = "http://localhost:7997"
    """Endpoint URL to use."""

    client: Any = None  #: :meta private:
    """Infinity client."""

    # LLM call kwargs
    class Config:
        """Configuration for this pydantic object."""

        extra = Extra.forbid

    @root_validator(allow_reuse=True)
    def validate_environment(cls, values: Dict) -> Dict:
        """Validate that api key and python package exists in environment."""

        values["infinity_api_url"] = get_from_dict_or_env(
            values, "infinity_api_url", "INFINITY_API_URL"
        )

        values["client"] = TinyAsyncOpenAIInfinityEmbeddingClient(
            host=values["infinity_api_url"],
        )
        return values

    def embed_documents(self, texts: List[str]) -> List[List[float]]:
        """Call out to Infinity's embedding endpoint.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """
        embeddings = self.client.embed(
            model=self.model,
            texts=texts,
        )
        return embeddings

    async def aembed_documents(self, texts: List[str]) -> List[List[float]]:
        """Async call out to Infinity's embedding endpoint.

        Args:
            texts: The list of texts to embed.

        Returns:
            List of embeddings, one for each text.
        """
        embeddings = await self.client.aembed(
            model=self.model,
            texts=texts,
        )
        return embeddings

    def embed_query(self, text: str) -> List[float]:
        """Call out to Infinity's embedding endpoint.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        return self.embed_documents([text])[0]

    async def aembed_query(self, text: str) -> List[float]:
        """Async call out to Infinity's embedding endpoint.

        Args:
            text: The text to embed.

        Returns:
            Embeddings for the text.
        """
        embeddings = await self.aembed_documents([text])
        return embeddings[0]


class TinyAsyncOpenAIInfinityEmbeddingClient:  #: :meta private:
    """Helper tool to embed Infinity.

    It is not a part of Langchain's stable API,
    direct use discouraged.

    Example:
        .. code-block:: python


            mini_client = TinyAsyncInfinityEmbeddingClient(
            )
            embeds = mini_client.embed(
                model="BAAI/bge-small",
                text=["doc1", "doc2"]
            )
            # or
            embeds = await mini_client.aembed(
                model="BAAI/bge-small",
                text=["doc1", "doc2"]
            )

    """

    def __init__(
        self,
        host: str = "http://localhost:7797/v1",
        aiosession: Optional[aiohttp.ClientSession] = None,
    ) -> None:
        self.host = host
        self.aiosession = aiosession

        if self.host is None or len(self.host) < 3:
            raise ValueError(" param `host` must be set to a valid url")
        self._batch_size = 128

    @staticmethod
    def _permute(
        texts: List[str], sorter: Callable = len
    ) -> Tuple[List[str], Callable]:
        """Sort texts in ascending order, and
        delivers a lambda expr, which can sort a same length list
        https://github.com/UKPLab/sentence-transformers/blob/
        c5f93f70eca933c78695c5bc686ceda59651ae3b/sentence_transformers/SentenceTransformer.py#L156

        Args:
            texts (List[str]): _description_
            sorter (Callable, optional): _description_. Defaults to len.

        Returns:
            Tuple[List[str], Callable]: _description_

        Example:
            ```
            texts = ["one","three","four"]
            perm_texts, undo = self._permute(texts)
            texts == undo(perm_texts)
            ```
        """

        if len(texts) == 1:
            # special case query
            return texts, lambda t: t
        length_sorted_idx = np.argsort([-sorter(sen) for sen in texts])
        texts_sorted = [texts[idx] for idx in length_sorted_idx]

        return texts_sorted, lambda unsorted_embeddings: [  # E731
            unsorted_embeddings[idx] for idx in np.argsort(length_sorted_idx)
        ]

    def _batch(self, texts: List[str]) -> List[List[str]]:
        """
        splits Lists of text parts into batches of size max `self._batch_size`
        When encoding vector database,

        Args:
            texts (List[str]): List of sentences
            self._batch_size (int, optional): max batch size of one request.

        Returns:
            List[List[str]]: Batches of List of sentences
        """
        if len(texts) == 1:
            # special case query
            return [texts]
        batches = []
        for start_index in range(0, len(texts), self._batch_size):
            batches.append(texts[start_index : start_index + self._batch_size])
        return batches

    @staticmethod
    def _unbatch(batch_of_texts: List[List[Any]]) -> List[Any]:
        if len(batch_of_texts) == 1 and len(batch_of_texts[0]) == 1:
            # special case query
            return batch_of_texts[0]
        texts = []
        for sublist in batch_of_texts:
            texts.extend(sublist)
        return texts

    def _kwargs_post_request(self, model: str, texts: List[str]) -> Dict[str, Any]:
        """Build the kwargs for the Post request, used by sync

        Args:
            model (str): _description_
            texts (List[str]): _description_

        Returns:
            Dict[str, Collection[str]]: _description_
        """
        return dict(
            url=f"{self.host}/embeddings",
            headers={
                # "accept": "application/json",
                "content-type": "application/json",
            },
            json=dict(
                input=texts,
                model=model,
            ),
        )

    def _sync_request_embed(
        self, model: str, batch_texts: List[str]
    ) -> List[List[float]]:
        response = requests.post(
            **self._kwargs_post_request(model=model, texts=batch_texts)
        )
        if response.status_code != 200:
            raise Exception(
                f"Infinity returned an unexpected response with status "
                f"{response.status_code}: {response.text}"
            )
        return [e["embedding"] for e in response.json()["data"]]

    def embed(self, model: str, texts: List[str]) -> List[List[float]]:
        """call the embedding of model

        Args:
            model (str): to embedding model
            texts (List[str]): List of sentences to embed.

        Returns:
            List[List[float]]: List of vectors for each sentence
        """
        perm_texts, unpermute_func = self._permute(texts)
        perm_texts_batched = self._batch(perm_texts)

        # Request
        map_args = (
            self._sync_request_embed,
            [model] * len(perm_texts_batched),
            perm_texts_batched,
        )
        if len(perm_texts_batched) == 1:
            embeddings_batch_perm = list(map(*map_args))
        else:
            with ThreadPoolExecutor(32) as p:
                embeddings_batch_perm = list(p.map(*map_args))

        embeddings_perm = self._unbatch(embeddings_batch_perm)
        embeddings = unpermute_func(embeddings_perm)
        return embeddings

    async def _async_request(
        self, session: aiohttp.ClientSession, kwargs: Dict[str, Any]
    ) -> List[List[float]]:
        async with session.post(**kwargs) as response:
            if response.status != 200:
                raise Exception(
                    f"Infinity returned an unexpected response with status "
                    f"{response.status}: {response.text}"
                )
            embedding = (await response.json())["embeddings"]
            return [e["embedding"] for e in embedding]

    async def aembed(self, model: str, texts: List[str]) -> List[List[float]]:
        """call the embedding of model, async method

        Args:
            model (str): to embedding model
            texts (List[str]): List of sentences to embed.

        Returns:
            List[List[float]]: List of vectors for each sentence
        """
        perm_texts, unpermute_func = self._permute(texts)
        perm_texts_batched = self._batch(perm_texts)

        # Request
        if self.aiosession is None:
            self.aiosession = aiohttp.ClientSession(
                trust_env=True, connector=aiohttp.TCPConnector(limit=32)
            )
        async with self.aiosession as session:
            embeddings_batch_perm = await asyncio.gather(
                *[
                    self._async_request(
                        session=session,
                        **self._kwargs_post_request(model=model, texts=t),
                    )
                    for t in perm_texts_batched
                ]
            )

        embeddings_perm = self._unbatch(embeddings_batch_perm)
        embeddings = unpermute_func(embeddings_perm)
        return embeddings