File size: 20,385 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
import json
import tempfile
from copy import deepcopy
from pathlib import Path
from typing import Any, Dict, List, Optional, Sequence, Union

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.outputs import LLMResult
from langchain_core.utils import guard_import

from langchain_community.callbacks.utils import (
    BaseMetadataCallbackHandler,
    flatten_dict,
    hash_string,
    import_pandas,
    import_spacy,
    import_textstat,
)


def import_wandb() -> Any:
    """Import the wandb python package and raise an error if it is not installed."""
    return guard_import("wandb")


def load_json_to_dict(json_path: Union[str, Path]) -> dict:
    """Load json file to a dictionary.

    Parameters:
        json_path (str): The path to the json file.

    Returns:
        (dict): The dictionary representation of the json file.
    """
    with open(json_path, "r") as f:
        data = json.load(f)
    return data


def analyze_text(
    text: str,
    complexity_metrics: bool = True,
    visualize: bool = True,
    nlp: Any = None,
    output_dir: Optional[Union[str, Path]] = None,
) -> dict:
    """Analyze text using textstat and spacy.

    Parameters:
        text (str): The text to analyze.
        complexity_metrics (bool): Whether to compute complexity metrics.
        visualize (bool): Whether to visualize the text.
        nlp (spacy.lang): The spacy language model to use for visualization.
        output_dir (str): The directory to save the visualization files to.

    Returns:
        (dict): A dictionary containing the complexity metrics and visualization
            files serialized in a wandb.Html element.
    """
    resp = {}
    textstat = import_textstat()
    wandb = import_wandb()
    spacy = import_spacy()
    if complexity_metrics:
        text_complexity_metrics = {
            "flesch_reading_ease": textstat.flesch_reading_ease(text),
            "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
            "smog_index": textstat.smog_index(text),
            "coleman_liau_index": textstat.coleman_liau_index(text),
            "automated_readability_index": textstat.automated_readability_index(text),
            "dale_chall_readability_score": textstat.dale_chall_readability_score(text),
            "difficult_words": textstat.difficult_words(text),
            "linsear_write_formula": textstat.linsear_write_formula(text),
            "gunning_fog": textstat.gunning_fog(text),
            "text_standard": textstat.text_standard(text),
            "fernandez_huerta": textstat.fernandez_huerta(text),
            "szigriszt_pazos": textstat.szigriszt_pazos(text),
            "gutierrez_polini": textstat.gutierrez_polini(text),
            "crawford": textstat.crawford(text),
            "gulpease_index": textstat.gulpease_index(text),
            "osman": textstat.osman(text),
        }
        resp.update(text_complexity_metrics)

    if visualize and nlp and output_dir is not None:
        doc = nlp(text)

        dep_out = spacy.displacy.render(doc, style="dep", jupyter=False, page=True)
        dep_output_path = Path(output_dir, hash_string(f"dep-{text}") + ".html")
        dep_output_path.open("w", encoding="utf-8").write(dep_out)

        ent_out = spacy.displacy.render(doc, style="ent", jupyter=False, page=True)
        ent_output_path = Path(output_dir, hash_string(f"ent-{text}") + ".html")
        ent_output_path.open("w", encoding="utf-8").write(ent_out)

        text_visualizations = {
            "dependency_tree": wandb.Html(str(dep_output_path)),
            "entities": wandb.Html(str(ent_output_path)),
        }
        resp.update(text_visualizations)

    return resp


def construct_html_from_prompt_and_generation(prompt: str, generation: str) -> Any:
    """Construct an html element from a prompt and a generation.

    Parameters:
        prompt (str): The prompt.
        generation (str): The generation.

    Returns:
        (wandb.Html): The html element."""
    wandb = import_wandb()
    formatted_prompt = prompt.replace("\n", "<br>")
    formatted_generation = generation.replace("\n", "<br>")

    return wandb.Html(
        f"""
    <p style="color:black;">{formatted_prompt}:</p>
    <blockquote>
      <p style="color:green;">
        {formatted_generation}
      </p>
    </blockquote>
    """,
        inject=False,
    )


class WandbCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
    """Callback Handler that logs to Weights and Biases.

    Parameters:
        job_type (str): The type of job.
        project (str): The project to log to.
        entity (str): The entity to log to.
        tags (list): The tags to log.
        group (str): The group to log to.
        name (str): The name of the run.
        notes (str): The notes to log.
        visualize (bool): Whether to visualize the run.
        complexity_metrics (bool): Whether to log complexity metrics.
        stream_logs (bool): Whether to stream callback actions to W&B

    This handler will utilize the associated callback method called and formats
    the input of each callback function with metadata regarding the state of LLM run,
    and adds the response to the list of records for both the {method}_records and
    action. It then logs the response using the run.log() method to Weights and Biases.
    """

    def __init__(
        self,
        job_type: Optional[str] = None,
        project: Optional[str] = "langchain_callback_demo",
        entity: Optional[str] = None,
        tags: Optional[Sequence] = None,
        group: Optional[str] = None,
        name: Optional[str] = None,
        notes: Optional[str] = None,
        visualize: bool = False,
        complexity_metrics: bool = False,
        stream_logs: bool = False,
    ) -> None:
        """Initialize callback handler."""

        wandb = import_wandb()
        import_pandas()
        import_textstat()
        spacy = import_spacy()
        super().__init__()

        self.job_type = job_type
        self.project = project
        self.entity = entity
        self.tags = tags
        self.group = group
        self.name = name
        self.notes = notes
        self.visualize = visualize
        self.complexity_metrics = complexity_metrics
        self.stream_logs = stream_logs

        self.temp_dir = tempfile.TemporaryDirectory()
        self.run = wandb.init(
            job_type=self.job_type,
            project=self.project,
            entity=self.entity,
            tags=self.tags,
            group=self.group,
            name=self.name,
            notes=self.notes,
        )
        warning = (
            "DEPRECATION: The `WandbCallbackHandler` will soon be deprecated in favor "
            "of the `WandbTracer`. Please update your code to use the `WandbTracer` "
            "instead."
        )
        wandb.termwarn(
            warning,
            repeat=False,
        )
        self.callback_columns: list = []
        self.action_records: list = []
        self.complexity_metrics = complexity_metrics
        self.visualize = visualize
        self.nlp = spacy.load("en_core_web_sm")

    def _init_resp(self) -> Dict:
        return {k: None for k in self.callback_columns}

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts."""
        self.step += 1
        self.llm_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update({"action": "on_llm_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        for prompt in prompts:
            prompt_resp = deepcopy(resp)
            prompt_resp["prompts"] = prompt
            self.on_llm_start_records.append(prompt_resp)
            self.action_records.append(prompt_resp)
            if self.stream_logs:
                self.run.log(prompt_resp)

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run when LLM generates a new token."""
        self.step += 1
        self.llm_streams += 1

        resp = self._init_resp()
        resp.update({"action": "on_llm_new_token", "token": token})
        resp.update(self.get_custom_callback_meta())

        self.on_llm_token_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends running."""
        self.step += 1
        self.llm_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update({"action": "on_llm_end"})
        resp.update(flatten_dict(response.llm_output or {}))
        resp.update(self.get_custom_callback_meta())

        for generations in response.generations:
            for generation in generations:
                generation_resp = deepcopy(resp)
                generation_resp.update(flatten_dict(generation.dict()))
                generation_resp.update(
                    analyze_text(
                        generation.text,
                        complexity_metrics=self.complexity_metrics,
                        visualize=self.visualize,
                        nlp=self.nlp,
                        output_dir=self.temp_dir.name,
                    )
                )
                self.on_llm_end_records.append(generation_resp)
                self.action_records.append(generation_resp)
                if self.stream_logs:
                    self.run.log(generation_resp)

    def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when LLM errors."""
        self.step += 1
        self.errors += 1

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        """Run when chain starts running."""
        self.step += 1
        self.chain_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update({"action": "on_chain_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        chain_input = inputs["input"]

        if isinstance(chain_input, str):
            input_resp = deepcopy(resp)
            input_resp["input"] = chain_input
            self.on_chain_start_records.append(input_resp)
            self.action_records.append(input_resp)
            if self.stream_logs:
                self.run.log(input_resp)
        elif isinstance(chain_input, list):
            for inp in chain_input:
                input_resp = deepcopy(resp)
                input_resp.update(inp)
                self.on_chain_start_records.append(input_resp)
                self.action_records.append(input_resp)
                if self.stream_logs:
                    self.run.log(input_resp)
        else:
            raise ValueError("Unexpected data format provided!")

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Run when chain ends running."""
        self.step += 1
        self.chain_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update({"action": "on_chain_end", "outputs": outputs["output"]})
        resp.update(self.get_custom_callback_meta())

        self.on_chain_end_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when chain errors."""
        self.step += 1
        self.errors += 1

    def on_tool_start(
        self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
    ) -> None:
        """Run when tool starts running."""
        self.step += 1
        self.tool_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update({"action": "on_tool_start", "input_str": input_str})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        self.on_tool_start_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_tool_end(self, output: Any, **kwargs: Any) -> None:
        """Run when tool ends running."""
        output = str(output)
        self.step += 1
        self.tool_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update({"action": "on_tool_end", "output": output})
        resp.update(self.get_custom_callback_meta())

        self.on_tool_end_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when tool errors."""
        self.step += 1
        self.errors += 1

    def on_text(self, text: str, **kwargs: Any) -> None:
        """
        Run when agent is ending.
        """
        self.step += 1
        self.text_ctr += 1

        resp = self._init_resp()
        resp.update({"action": "on_text", "text": text})
        resp.update(self.get_custom_callback_meta())

        self.on_text_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
        """Run when agent ends running."""
        self.step += 1
        self.agent_ends += 1
        self.ends += 1

        resp = self._init_resp()
        resp.update(
            {
                "action": "on_agent_finish",
                "output": finish.return_values["output"],
                "log": finish.log,
            }
        )
        resp.update(self.get_custom_callback_meta())

        self.on_agent_finish_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
        """Run on agent action."""
        self.step += 1
        self.tool_starts += 1
        self.starts += 1

        resp = self._init_resp()
        resp.update(
            {
                "action": "on_agent_action",
                "tool": action.tool,
                "tool_input": action.tool_input,
                "log": action.log,
            }
        )
        resp.update(self.get_custom_callback_meta())
        self.on_agent_action_records.append(resp)
        self.action_records.append(resp)
        if self.stream_logs:
            self.run.log(resp)

    def _create_session_analysis_df(self) -> Any:
        """Create a dataframe with all the information from the session."""
        pd = import_pandas()
        on_llm_start_records_df = pd.DataFrame(self.on_llm_start_records)
        on_llm_end_records_df = pd.DataFrame(self.on_llm_end_records)

        llm_input_prompts_df = (
            on_llm_start_records_df[["step", "prompts", "name"]]
            .dropna(axis=1)
            .rename({"step": "prompt_step"}, axis=1)
        )
        complexity_metrics_columns = []
        visualizations_columns = []

        if self.complexity_metrics:
            complexity_metrics_columns = [
                "flesch_reading_ease",
                "flesch_kincaid_grade",
                "smog_index",
                "coleman_liau_index",
                "automated_readability_index",
                "dale_chall_readability_score",
                "difficult_words",
                "linsear_write_formula",
                "gunning_fog",
                "text_standard",
                "fernandez_huerta",
                "szigriszt_pazos",
                "gutierrez_polini",
                "crawford",
                "gulpease_index",
                "osman",
            ]

        if self.visualize:
            visualizations_columns = ["dependency_tree", "entities"]

        llm_outputs_df = (
            on_llm_end_records_df[
                [
                    "step",
                    "text",
                    "token_usage_total_tokens",
                    "token_usage_prompt_tokens",
                    "token_usage_completion_tokens",
                ]
                + complexity_metrics_columns
                + visualizations_columns
            ]
            .dropna(axis=1)
            .rename({"step": "output_step", "text": "output"}, axis=1)
        )
        session_analysis_df = pd.concat([llm_input_prompts_df, llm_outputs_df], axis=1)
        session_analysis_df["chat_html"] = session_analysis_df[
            ["prompts", "output"]
        ].apply(
            lambda row: construct_html_from_prompt_and_generation(
                row["prompts"], row["output"]
            ),
            axis=1,
        )
        return session_analysis_df

    def flush_tracker(
        self,
        langchain_asset: Any = None,
        reset: bool = True,
        finish: bool = False,
        job_type: Optional[str] = None,
        project: Optional[str] = None,
        entity: Optional[str] = None,
        tags: Optional[Sequence] = None,
        group: Optional[str] = None,
        name: Optional[str] = None,
        notes: Optional[str] = None,
        visualize: Optional[bool] = None,
        complexity_metrics: Optional[bool] = None,
    ) -> None:
        """Flush the tracker and reset the session.

        Args:
            langchain_asset: The langchain asset to save.
            reset: Whether to reset the session.
            finish: Whether to finish the run.
            job_type: The job type.
            project: The project.
            entity: The entity.
            tags: The tags.
            group: The group.
            name: The name.
            notes: The notes.
            visualize: Whether to visualize.
            complexity_metrics: Whether to compute complexity metrics.

            Returns:
                None
        """
        pd = import_pandas()
        wandb = import_wandb()
        action_records_table = wandb.Table(dataframe=pd.DataFrame(self.action_records))
        session_analysis_table = wandb.Table(
            dataframe=self._create_session_analysis_df()
        )
        self.run.log(
            {
                "action_records": action_records_table,
                "session_analysis": session_analysis_table,
            }
        )

        if langchain_asset:
            langchain_asset_path = Path(self.temp_dir.name, "model.json")
            model_artifact = wandb.Artifact(name="model", type="model")
            model_artifact.add(action_records_table, name="action_records")
            model_artifact.add(session_analysis_table, name="session_analysis")
            try:
                langchain_asset.save(langchain_asset_path)
                model_artifact.add_file(str(langchain_asset_path))
                model_artifact.metadata = load_json_to_dict(langchain_asset_path)
            except ValueError:
                langchain_asset.save_agent(langchain_asset_path)
                model_artifact.add_file(str(langchain_asset_path))
                model_artifact.metadata = load_json_to_dict(langchain_asset_path)
            except NotImplementedError as e:
                print("Could not save model.")  # noqa: T201
                print(repr(e))  # noqa: T201
                pass
            self.run.log_artifact(model_artifact)

        if finish or reset:
            self.run.finish()
            self.temp_dir.cleanup()
            self.reset_callback_meta()
        if reset:
            self.__init__(  # type: ignore
                job_type=job_type if job_type else self.job_type,
                project=project if project else self.project,
                entity=entity if entity else self.entity,
                tags=tags if tags else self.tags,
                group=group if group else self.group,
                name=name if name else self.name,
                notes=notes if notes else self.notes,
                visualize=visualize if visualize else self.visualize,
                complexity_metrics=(
                    complexity_metrics
                    if complexity_metrics
                    else self.complexity_metrics
                ),
            )