File size: 8,787 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
import json
import os
import shutil
import tempfile
from copy import deepcopy
from typing import Any, Dict, List, Optional

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.outputs import LLMResult

from langchain_community.callbacks.utils import (
    flatten_dict,
)


def save_json(data: dict, file_path: str) -> None:
    """Save dict to local file path.

    Parameters:
        data (dict): The dictionary to be saved.
        file_path (str): Local file path.
    """
    with open(file_path, "w") as outfile:
        json.dump(data, outfile)


class SageMakerCallbackHandler(BaseCallbackHandler):
    """Callback Handler that logs prompt artifacts and metrics to SageMaker Experiments.

    Parameters:
        run (sagemaker.experiments.run.Run): Run object where the experiment is logged.
    """

    def __init__(self, run: Any) -> None:
        """Initialize callback handler."""
        super().__init__()

        self.run = run

        self.metrics = {
            "step": 0,
            "starts": 0,
            "ends": 0,
            "errors": 0,
            "text_ctr": 0,
            "chain_starts": 0,
            "chain_ends": 0,
            "llm_starts": 0,
            "llm_ends": 0,
            "llm_streams": 0,
            "tool_starts": 0,
            "tool_ends": 0,
            "agent_ends": 0,
        }

        # Create a temporary directory
        self.temp_dir = tempfile.mkdtemp()

    def _reset(self) -> None:
        for k, v in self.metrics.items():
            self.metrics[k] = 0

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts."""
        self.metrics["step"] += 1
        self.metrics["llm_starts"] += 1
        self.metrics["starts"] += 1

        llm_starts = self.metrics["llm_starts"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_llm_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.metrics)

        for idx, prompt in enumerate(prompts):
            prompt_resp = deepcopy(resp)
            prompt_resp["prompt"] = prompt
            self.jsonf(
                prompt_resp,
                self.temp_dir,
                f"llm_start_{llm_starts}_prompt_{idx}",
            )

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run when LLM generates a new token."""
        self.metrics["step"] += 1
        self.metrics["llm_streams"] += 1

        llm_streams = self.metrics["llm_streams"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_llm_new_token", "token": token})
        resp.update(self.metrics)

        self.jsonf(resp, self.temp_dir, f"llm_new_tokens_{llm_streams}")

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends running."""
        self.metrics["step"] += 1
        self.metrics["llm_ends"] += 1
        self.metrics["ends"] += 1

        llm_ends = self.metrics["llm_ends"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_llm_end"})
        resp.update(flatten_dict(response.llm_output or {}))

        resp.update(self.metrics)

        for generations in response.generations:
            for idx, generation in enumerate(generations):
                generation_resp = deepcopy(resp)
                generation_resp.update(flatten_dict(generation.dict()))

                self.jsonf(
                    resp,
                    self.temp_dir,
                    f"llm_end_{llm_ends}_generation_{idx}",
                )

    def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when LLM errors."""
        self.metrics["step"] += 1
        self.metrics["errors"] += 1

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        """Run when chain starts running."""
        self.metrics["step"] += 1
        self.metrics["chain_starts"] += 1
        self.metrics["starts"] += 1

        chain_starts = self.metrics["chain_starts"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_chain_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.metrics)

        chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()])
        input_resp = deepcopy(resp)
        input_resp["inputs"] = chain_input

        self.jsonf(input_resp, self.temp_dir, f"chain_start_{chain_starts}")

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Run when chain ends running."""
        self.metrics["step"] += 1
        self.metrics["chain_ends"] += 1
        self.metrics["ends"] += 1

        chain_ends = self.metrics["chain_ends"]

        resp: Dict[str, Any] = {}
        chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()])
        resp.update({"action": "on_chain_end", "outputs": chain_output})
        resp.update(self.metrics)

        self.jsonf(resp, self.temp_dir, f"chain_end_{chain_ends}")

    def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when chain errors."""
        self.metrics["step"] += 1
        self.metrics["errors"] += 1

    def on_tool_start(
        self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
    ) -> None:
        """Run when tool starts running."""
        self.metrics["step"] += 1
        self.metrics["tool_starts"] += 1
        self.metrics["starts"] += 1

        tool_starts = self.metrics["tool_starts"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_tool_start", "input_str": input_str})
        resp.update(flatten_dict(serialized))
        resp.update(self.metrics)

        self.jsonf(resp, self.temp_dir, f"tool_start_{tool_starts}")

    def on_tool_end(self, output: Any, **kwargs: Any) -> None:
        """Run when tool ends running."""
        output = str(output)
        self.metrics["step"] += 1
        self.metrics["tool_ends"] += 1
        self.metrics["ends"] += 1

        tool_ends = self.metrics["tool_ends"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_tool_end", "output": output})
        resp.update(self.metrics)

        self.jsonf(resp, self.temp_dir, f"tool_end_{tool_ends}")

    def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when tool errors."""
        self.metrics["step"] += 1
        self.metrics["errors"] += 1

    def on_text(self, text: str, **kwargs: Any) -> None:
        """
        Run when agent is ending.
        """
        self.metrics["step"] += 1
        self.metrics["text_ctr"] += 1

        text_ctr = self.metrics["text_ctr"]

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_text", "text": text})
        resp.update(self.metrics)

        self.jsonf(resp, self.temp_dir, f"on_text_{text_ctr}")

    def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
        """Run when agent ends running."""
        self.metrics["step"] += 1
        self.metrics["agent_ends"] += 1
        self.metrics["ends"] += 1

        agent_ends = self.metrics["agent_ends"]
        resp: Dict[str, Any] = {}
        resp.update(
            {
                "action": "on_agent_finish",
                "output": finish.return_values["output"],
                "log": finish.log,
            }
        )
        resp.update(self.metrics)

        self.jsonf(resp, self.temp_dir, f"agent_finish_{agent_ends}")

    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
        """Run on agent action."""
        self.metrics["step"] += 1
        self.metrics["tool_starts"] += 1
        self.metrics["starts"] += 1

        tool_starts = self.metrics["tool_starts"]
        resp: Dict[str, Any] = {}
        resp.update(
            {
                "action": "on_agent_action",
                "tool": action.tool,
                "tool_input": action.tool_input,
                "log": action.log,
            }
        )
        resp.update(self.metrics)
        self.jsonf(resp, self.temp_dir, f"agent_action_{tool_starts}")

    def jsonf(
        self,
        data: Dict[str, Any],
        data_dir: str,
        filename: str,
        is_output: Optional[bool] = True,
    ) -> None:
        """To log the input data as json file artifact."""
        file_path = os.path.join(data_dir, f"{filename}.json")
        save_json(data, file_path)
        self.run.log_file(file_path, name=filename, is_output=is_output)

    def flush_tracker(self) -> None:
        """Reset the steps and delete the temporary local directory."""
        self._reset()
        shutil.rmtree(self.temp_dir)