Spaces:
Runtime error
Runtime error
File size: 8,764 Bytes
ed4d993 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 |
import time
from typing import Any, Dict, List, Optional, cast
from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.messages import BaseMessage
from langchain_core.outputs import ChatGeneration, LLMResult
from langchain_core.utils import guard_import
def import_infino() -> Any:
"""Import the infino client."""
return guard_import("infinopy").InfinoClient()
def import_tiktoken() -> Any:
"""Import tiktoken for counting tokens for OpenAI models."""
return guard_import("tiktoken")
def get_num_tokens(string: str, openai_model_name: str) -> int:
"""Calculate num tokens for OpenAI with tiktoken package.
Official documentation: https://github.com/openai/openai-cookbook/blob/main
/examples/How_to_count_tokens_with_tiktoken.ipynb
"""
tiktoken = import_tiktoken()
encoding = tiktoken.encoding_for_model(openai_model_name)
num_tokens = len(encoding.encode(string))
return num_tokens
class InfinoCallbackHandler(BaseCallbackHandler):
"""Callback Handler that logs to Infino."""
def __init__(
self,
model_id: Optional[str] = None,
model_version: Optional[str] = None,
verbose: bool = False,
) -> None:
# Set Infino client
self.client = import_infino()
self.model_id = model_id
self.model_version = model_version
self.verbose = verbose
self.is_chat_openai_model = False
self.chat_openai_model_name = "gpt-3.5-turbo"
def _send_to_infino(
self,
key: str,
value: Any,
is_ts: bool = True,
) -> None:
"""Send the key-value to Infino.
Parameters:
key (str): the key to send to Infino.
value (Any): the value to send to Infino.
is_ts (bool): if True, the value is part of a time series, else it
is sent as a log message.
"""
payload = {
"date": int(time.time()),
key: value,
"labels": {
"model_id": self.model_id,
"model_version": self.model_version,
},
}
if self.verbose:
print(f"Tracking {key} with Infino: {payload}") # noqa: T201
# Append to Infino time series only if is_ts is True, otherwise
# append to Infino log.
if is_ts:
self.client.append_ts(payload)
else:
self.client.append_log(payload)
def on_llm_start(
self,
serialized: Dict[str, Any],
prompts: List[str],
**kwargs: Any,
) -> None:
"""Log the prompts to Infino, and set start time and error flag."""
for prompt in prompts:
self._send_to_infino("prompt", prompt, is_ts=False)
# Set the error flag to indicate no error (this will get overridden
# in on_llm_error if an error occurs).
self.error = 0
# Set the start time (so that we can calculate the request
# duration in on_llm_end).
self.start_time = time.time()
def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
"""Do nothing when a new token is generated."""
pass
def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
"""Log the latency, error, token usage, and response to Infino."""
# Calculate and track the request latency.
self.end_time = time.time()
duration = self.end_time - self.start_time
self._send_to_infino("latency", duration)
# Track success or error flag.
self._send_to_infino("error", self.error)
# Track prompt response.
for generations in response.generations:
for generation in generations:
self._send_to_infino("prompt_response", generation.text, is_ts=False)
# Track token usage (for non-chat models).
if (response.llm_output is not None) and isinstance(response.llm_output, Dict):
token_usage = response.llm_output["token_usage"]
if token_usage is not None:
prompt_tokens = token_usage["prompt_tokens"]
total_tokens = token_usage["total_tokens"]
completion_tokens = token_usage["completion_tokens"]
self._send_to_infino("prompt_tokens", prompt_tokens)
self._send_to_infino("total_tokens", total_tokens)
self._send_to_infino("completion_tokens", completion_tokens)
# Track completion token usage (for openai chat models).
if self.is_chat_openai_model:
messages = " ".join(
cast(str, cast(ChatGeneration, generation).message.content)
for generation in generations
)
completion_tokens = get_num_tokens(
messages, openai_model_name=self.chat_openai_model_name
)
self._send_to_infino("completion_tokens", completion_tokens)
def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
"""Set the error flag."""
self.error = 1
def on_chain_start(
self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
) -> None:
"""Do nothing when LLM chain starts."""
pass
def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
"""Do nothing when LLM chain ends."""
pass
def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
"""Need to log the error."""
pass
def on_tool_start(
self,
serialized: Dict[str, Any],
input_str: str,
**kwargs: Any,
) -> None:
"""Do nothing when tool starts."""
pass
def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
"""Do nothing when agent takes a specific action."""
pass
def on_tool_end(
self,
output: str,
observation_prefix: Optional[str] = None,
llm_prefix: Optional[str] = None,
**kwargs: Any,
) -> None:
"""Do nothing when tool ends."""
pass
def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
"""Do nothing when tool outputs an error."""
pass
def on_text(self, text: str, **kwargs: Any) -> None:
"""Do nothing."""
pass
def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
"""Do nothing."""
pass
def on_chat_model_start(
self,
serialized: Dict[str, Any],
messages: List[List[BaseMessage]],
**kwargs: Any,
) -> None:
"""Run when LLM starts running."""
# Currently, for chat models, we only support input prompts for ChatOpenAI.
# Check if this model is a ChatOpenAI model.
values = serialized.get("id")
if values:
for value in values:
if value == "ChatOpenAI":
self.is_chat_openai_model = True
break
# Track prompt tokens for ChatOpenAI model.
if self.is_chat_openai_model:
invocation_params = kwargs.get("invocation_params")
if invocation_params:
model_name = invocation_params.get("model_name")
if model_name:
self.chat_openai_model_name = model_name
prompt_tokens = 0
for message_list in messages:
message_string = " ".join(
cast(str, msg.content) for msg in message_list
)
num_tokens = get_num_tokens(
message_string,
openai_model_name=self.chat_openai_model_name,
)
prompt_tokens += num_tokens
self._send_to_infino("prompt_tokens", prompt_tokens)
if self.verbose:
print( # noqa: T201
f"on_chat_model_start: is_chat_openai_model= \
{self.is_chat_openai_model}, \
chat_openai_model_name={self.chat_openai_model_name}"
)
# Send the prompt to infino
prompt = " ".join(
cast(str, msg.content) for sublist in messages for msg in sublist
)
self._send_to_infino("prompt", prompt, is_ts=False)
# Set the error flag to indicate no error (this will get overridden
# in on_llm_error if an error occurs).
self.error = 0
# Set the start time (so that we can calculate the request
# duration in on_llm_end).
self.start_time = time.time()
|