File size: 12,769 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
"""FlyteKit callback handler."""

from __future__ import annotations

import logging
from copy import deepcopy
from typing import TYPE_CHECKING, Any, Dict, List, Tuple

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.outputs import LLMResult
from langchain_core.utils import guard_import

from langchain_community.callbacks.utils import (
    BaseMetadataCallbackHandler,
    flatten_dict,
    import_pandas,
    import_spacy,
    import_textstat,
)

if TYPE_CHECKING:
    import flytekit
    from flytekitplugins.deck import renderer

logger = logging.getLogger(__name__)


def import_flytekit() -> Tuple[flytekit, renderer]:
    """Import flytekit and flytekitplugins-deck-standard."""
    return (
        guard_import("flytekit"),
        guard_import(
            "flytekitplugins.deck", pip_name="flytekitplugins-deck-standard"
        ).renderer,
    )


def analyze_text(
    text: str,
    nlp: Any = None,
    textstat: Any = None,
) -> dict:
    """Analyze text using textstat and spacy.

    Parameters:
        text (str): The text to analyze.
        nlp (spacy.lang): The spacy language model to use for visualization.

    Returns:
        (dict): A dictionary containing the complexity metrics and visualization
            files serialized to HTML string.
    """
    resp: Dict[str, Any] = {}
    if textstat is not None:
        text_complexity_metrics = {
            "flesch_reading_ease": textstat.flesch_reading_ease(text),
            "flesch_kincaid_grade": textstat.flesch_kincaid_grade(text),
            "smog_index": textstat.smog_index(text),
            "coleman_liau_index": textstat.coleman_liau_index(text),
            "automated_readability_index": textstat.automated_readability_index(text),
            "dale_chall_readability_score": textstat.dale_chall_readability_score(text),
            "difficult_words": textstat.difficult_words(text),
            "linsear_write_formula": textstat.linsear_write_formula(text),
            "gunning_fog": textstat.gunning_fog(text),
            "fernandez_huerta": textstat.fernandez_huerta(text),
            "szigriszt_pazos": textstat.szigriszt_pazos(text),
            "gutierrez_polini": textstat.gutierrez_polini(text),
            "crawford": textstat.crawford(text),
            "gulpease_index": textstat.gulpease_index(text),
            "osman": textstat.osman(text),
        }
        resp.update({"text_complexity_metrics": text_complexity_metrics})
        resp.update(text_complexity_metrics)

    if nlp is not None:
        spacy = import_spacy()
        doc = nlp(text)
        dep_out = spacy.displacy.render(doc, style="dep", jupyter=False, page=True)
        ent_out = spacy.displacy.render(doc, style="ent", jupyter=False, page=True)
        text_visualizations = {
            "dependency_tree": dep_out,
            "entities": ent_out,
        }
        resp.update(text_visualizations)

    return resp


class FlyteCallbackHandler(BaseMetadataCallbackHandler, BaseCallbackHandler):
    """Callback handler that is used within a Flyte task."""

    def __init__(self) -> None:
        """Initialize callback handler."""
        flytekit, renderer = import_flytekit()
        self.pandas = import_pandas()

        self.textstat = None
        try:
            self.textstat = import_textstat()
        except ImportError:
            logger.warning(
                "Textstat library is not installed. \
                It may result in the inability to log \
                certain metrics that can be captured with Textstat."
            )

        spacy = None
        try:
            spacy = import_spacy()
        except ImportError:
            logger.warning(
                "Spacy library is not installed. \
                It may result in the inability to log \
                certain metrics that can be captured with Spacy."
            )

        super().__init__()

        self.nlp = None
        if spacy:
            try:
                self.nlp = spacy.load("en_core_web_sm")
            except OSError:
                logger.warning(
                    "FlyteCallbackHandler uses spacy's en_core_web_sm model"
                    " for certain metrics. To download,"
                    " run the following command in your terminal:"
                    " `python -m spacy download en_core_web_sm`"
                )

        self.table_renderer = renderer.TableRenderer
        self.markdown_renderer = renderer.MarkdownRenderer

        self.deck = flytekit.Deck(
            "LangChain Metrics",
            self.markdown_renderer().to_html("## LangChain Metrics"),
        )

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        """Run when LLM starts."""

        self.step += 1
        self.llm_starts += 1
        self.starts += 1

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_llm_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        prompt_responses = []
        for prompt in prompts:
            prompt_responses.append(prompt)

        resp.update({"prompts": prompt_responses})

        self.deck.append(self.markdown_renderer().to_html("### LLM Start"))
        self.deck.append(
            self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
        )

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Run when LLM generates a new token."""

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        """Run when LLM ends running."""
        self.step += 1
        self.llm_ends += 1
        self.ends += 1

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_llm_end"})
        resp.update(flatten_dict(response.llm_output or {}))
        resp.update(self.get_custom_callback_meta())

        self.deck.append(self.markdown_renderer().to_html("### LLM End"))
        self.deck.append(self.table_renderer().to_html(self.pandas.DataFrame([resp])))

        for generations in response.generations:
            for generation in generations:
                generation_resp = deepcopy(resp)
                generation_resp.update(flatten_dict(generation.dict()))
                if self.nlp or self.textstat:
                    generation_resp.update(
                        analyze_text(
                            generation.text, nlp=self.nlp, textstat=self.textstat
                        )
                    )

                    complexity_metrics: Dict[str, float] = generation_resp.pop(
                        "text_complexity_metrics"
                    )
                    self.deck.append(
                        self.markdown_renderer().to_html("#### Text Complexity Metrics")
                    )
                    self.deck.append(
                        self.table_renderer().to_html(
                            self.pandas.DataFrame([complexity_metrics])
                        )
                        + "\n"
                    )

                    dependency_tree = generation_resp["dependency_tree"]
                    self.deck.append(
                        self.markdown_renderer().to_html("#### Dependency Tree")
                    )
                    self.deck.append(dependency_tree)

                    entities = generation_resp["entities"]
                    self.deck.append(self.markdown_renderer().to_html("#### Entities"))
                    self.deck.append(entities)
                else:
                    self.deck.append(
                        self.markdown_renderer().to_html("#### Generated Response")
                    )
                    self.deck.append(self.markdown_renderer().to_html(generation.text))

    def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when LLM errors."""
        self.step += 1
        self.errors += 1

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        """Run when chain starts running."""
        self.step += 1
        self.chain_starts += 1
        self.starts += 1

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_chain_start"})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        chain_input = ",".join([f"{k}={v}" for k, v in inputs.items()])
        input_resp = deepcopy(resp)
        input_resp["inputs"] = chain_input

        self.deck.append(self.markdown_renderer().to_html("### Chain Start"))
        self.deck.append(
            self.table_renderer().to_html(self.pandas.DataFrame([input_resp])) + "\n"
        )

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Run when chain ends running."""
        self.step += 1
        self.chain_ends += 1
        self.ends += 1

        resp: Dict[str, Any] = {}
        chain_output = ",".join([f"{k}={v}" for k, v in outputs.items()])
        resp.update({"action": "on_chain_end", "outputs": chain_output})
        resp.update(self.get_custom_callback_meta())

        self.deck.append(self.markdown_renderer().to_html("### Chain End"))
        self.deck.append(
            self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
        )

    def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when chain errors."""
        self.step += 1
        self.errors += 1

    def on_tool_start(
        self, serialized: Dict[str, Any], input_str: str, **kwargs: Any
    ) -> None:
        """Run when tool starts running."""
        self.step += 1
        self.tool_starts += 1
        self.starts += 1

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_tool_start", "input_str": input_str})
        resp.update(flatten_dict(serialized))
        resp.update(self.get_custom_callback_meta())

        self.deck.append(self.markdown_renderer().to_html("### Tool Start"))
        self.deck.append(
            self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
        )

    def on_tool_end(self, output: str, **kwargs: Any) -> None:
        """Run when tool ends running."""
        self.step += 1
        self.tool_ends += 1
        self.ends += 1

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_tool_end", "output": output})
        resp.update(self.get_custom_callback_meta())

        self.deck.append(self.markdown_renderer().to_html("### Tool End"))
        self.deck.append(
            self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
        )

    def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
        """Run when tool errors."""
        self.step += 1
        self.errors += 1

    def on_text(self, text: str, **kwargs: Any) -> None:
        """
        Run when agent is ending.
        """
        self.step += 1
        self.text_ctr += 1

        resp: Dict[str, Any] = {}
        resp.update({"action": "on_text", "text": text})
        resp.update(self.get_custom_callback_meta())

        self.deck.append(self.markdown_renderer().to_html("### On Text"))
        self.deck.append(
            self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
        )

    def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
        """Run when agent ends running."""
        self.step += 1
        self.agent_ends += 1
        self.ends += 1

        resp: Dict[str, Any] = {}
        resp.update(
            {
                "action": "on_agent_finish",
                "output": finish.return_values["output"],
                "log": finish.log,
            }
        )
        resp.update(self.get_custom_callback_meta())

        self.deck.append(self.markdown_renderer().to_html("### Agent Finish"))
        self.deck.append(
            self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
        )

    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
        """Run on agent action."""
        self.step += 1
        self.tool_starts += 1
        self.starts += 1

        resp: Dict[str, Any] = {}
        resp.update(
            {
                "action": "on_agent_action",
                "tool": action.tool,
                "tool_input": action.tool_input,
                "log": action.log,
            }
        )
        resp.update(self.get_custom_callback_meta())

        self.deck.append(self.markdown_renderer().to_html("### Agent Action"))
        self.deck.append(
            self.table_renderer().to_html(self.pandas.DataFrame([resp])) + "\n"
        )