File size: 7,480 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
from datetime import datetime
from typing import Any, Dict, List, Optional

from langchain_core.agents import AgentAction, AgentFinish
from langchain_core.callbacks import BaseCallbackHandler
from langchain_core.outputs import LLMResult

from langchain_community.callbacks.utils import import_pandas


class ArizeCallbackHandler(BaseCallbackHandler):
    """Callback Handler that logs to Arize."""

    def __init__(
        self,
        model_id: Optional[str] = None,
        model_version: Optional[str] = None,
        SPACE_KEY: Optional[str] = None,
        API_KEY: Optional[str] = None,
    ) -> None:
        """Initialize callback handler."""

        super().__init__()
        self.model_id = model_id
        self.model_version = model_version
        self.space_key = SPACE_KEY
        self.api_key = API_KEY
        self.prompt_records: List[str] = []
        self.response_records: List[str] = []
        self.prediction_ids: List[str] = []
        self.pred_timestamps: List[int] = []
        self.response_embeddings: List[float] = []
        self.prompt_embeddings: List[float] = []
        self.prompt_tokens = 0
        self.completion_tokens = 0
        self.total_tokens = 0
        self.step = 0

        from arize.pandas.embeddings import EmbeddingGenerator, UseCases
        from arize.pandas.logger import Client

        self.generator = EmbeddingGenerator.from_use_case(
            use_case=UseCases.NLP.SEQUENCE_CLASSIFICATION,
            model_name="distilbert-base-uncased",
            tokenizer_max_length=512,
            batch_size=256,
        )
        self.arize_client = Client(space_key=SPACE_KEY, api_key=API_KEY)
        if SPACE_KEY == "SPACE_KEY" or API_KEY == "API_KEY":
            raise ValueError("❌ CHANGE SPACE AND API KEYS")
        else:
            print("βœ… Arize client setup done! Now you can start using Arize!")  # noqa: T201

    def on_llm_start(
        self, serialized: Dict[str, Any], prompts: List[str], **kwargs: Any
    ) -> None:
        for prompt in prompts:
            self.prompt_records.append(prompt.replace("\n", ""))

    def on_llm_new_token(self, token: str, **kwargs: Any) -> None:
        """Do nothing."""
        pass

    def on_llm_end(self, response: LLMResult, **kwargs: Any) -> None:
        pd = import_pandas()
        from arize.utils.types import (
            EmbeddingColumnNames,
            Environments,
            ModelTypes,
            Schema,
        )

        # Safe check if 'llm_output' and 'token_usage' exist
        if response.llm_output and "token_usage" in response.llm_output:
            self.prompt_tokens = response.llm_output["token_usage"].get(
                "prompt_tokens", 0
            )
            self.total_tokens = response.llm_output["token_usage"].get(
                "total_tokens", 0
            )
            self.completion_tokens = response.llm_output["token_usage"].get(
                "completion_tokens", 0
            )
        else:
            self.prompt_tokens = (
                self.total_tokens
            ) = self.completion_tokens = 0  # assign default value

        for generations in response.generations:
            for generation in generations:
                prompt = self.prompt_records[self.step]
                self.step = self.step + 1
                prompt_embedding = pd.Series(
                    self.generator.generate_embeddings(
                        text_col=pd.Series(prompt.replace("\n", " "))
                    ).reset_index(drop=True)
                )

                # Assigning text to response_text instead of response
                response_text = generation.text.replace("\n", " ")
                response_embedding = pd.Series(
                    self.generator.generate_embeddings(
                        text_col=pd.Series(generation.text.replace("\n", " "))
                    ).reset_index(drop=True)
                )
                pred_timestamp = datetime.now().timestamp()

                # Define the columns and data
                columns = [
                    "prediction_ts",
                    "response",
                    "prompt",
                    "response_vector",
                    "prompt_vector",
                    "prompt_token",
                    "completion_token",
                    "total_token",
                ]
                data = [
                    [
                        pred_timestamp,
                        response_text,
                        prompt,
                        response_embedding[0],
                        prompt_embedding[0],
                        self.prompt_tokens,
                        self.total_tokens,
                        self.completion_tokens,
                    ]
                ]

                # Create the DataFrame
                df = pd.DataFrame(data, columns=columns)

                # Declare prompt and response columns
                prompt_columns = EmbeddingColumnNames(
                    vector_column_name="prompt_vector", data_column_name="prompt"
                )

                response_columns = EmbeddingColumnNames(
                    vector_column_name="response_vector", data_column_name="response"
                )

                schema = Schema(
                    timestamp_column_name="prediction_ts",
                    tag_column_names=[
                        "prompt_token",
                        "completion_token",
                        "total_token",
                    ],
                    prompt_column_names=prompt_columns,
                    response_column_names=response_columns,
                )

                response_from_arize = self.arize_client.log(
                    dataframe=df,
                    schema=schema,
                    model_id=self.model_id,
                    model_version=self.model_version,
                    model_type=ModelTypes.GENERATIVE_LLM,
                    environment=Environments.PRODUCTION,
                )
                if response_from_arize.status_code == 200:
                    print("βœ… Successfully logged data to Arize!")  # noqa: T201
                else:
                    print(f'❌ Logging failed "{response_from_arize.text}"')  # noqa: T201

    def on_llm_error(self, error: BaseException, **kwargs: Any) -> None:
        """Do nothing."""
        pass

    def on_chain_start(
        self, serialized: Dict[str, Any], inputs: Dict[str, Any], **kwargs: Any
    ) -> None:
        pass

    def on_chain_end(self, outputs: Dict[str, Any], **kwargs: Any) -> None:
        """Do nothing."""
        pass

    def on_chain_error(self, error: BaseException, **kwargs: Any) -> None:
        """Do nothing."""
        pass

    def on_tool_start(
        self,
        serialized: Dict[str, Any],
        input_str: str,
        **kwargs: Any,
    ) -> None:
        pass

    def on_agent_action(self, action: AgentAction, **kwargs: Any) -> Any:
        """Do nothing."""
        pass

    def on_tool_end(
        self,
        output: Any,
        observation_prefix: Optional[str] = None,
        llm_prefix: Optional[str] = None,
        **kwargs: Any,
    ) -> None:
        pass

    def on_tool_error(self, error: BaseException, **kwargs: Any) -> None:
        pass

    def on_text(self, text: str, **kwargs: Any) -> None:
        pass

    def on_agent_finish(self, finish: AgentFinish, **kwargs: Any) -> None:
        pass