File size: 8,600 Bytes
ed4d993
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
{
 "cells": [
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "# Amazon Personalize\n",
    "\n",
    "[Amazon Personalize](https://docs.aws.amazon.com/personalize/latest/dg/what-is-personalize.html) is a fully managed machine learning service that uses your data to generate item recommendations for your users. It can also generate user segments based on the users' affinity for certain items or item metadata.\n",
    "\n",
    "This notebook goes through how to use Amazon Personalize Chain. You need a Amazon Personalize campaign_arn or a recommender_arn before you get started with the below notebook.\n",
    "\n",
    "Following is a [tutorial](https://github.com/aws-samples/retail-demo-store/blob/master/workshop/1-Personalization/Lab-1-Introduction-and-data-preparation.ipynb) to setup a campaign_arn/recommender_arn on Amazon Personalize. Once the campaign_arn/recommender_arn is setup, you can use it in the langchain ecosystem. \n"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 1. Install Dependencies"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "scrolled": true
   },
   "outputs": [],
   "source": [
    "!pip install boto3"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "## 2. Sample Use-cases"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.1 [Use-case-1] Setup Amazon Personalize Client and retrieve recommendations"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain_experimental.recommenders import AmazonPersonalize\n",
    "\n",
    "recommender_arn = \"<insert_arn>\"\n",
    "\n",
    "client = AmazonPersonalize(\n",
    "    credentials_profile_name=\"default\",\n",
    "    region_name=\"us-west-2\",\n",
    "    recommender_arn=recommender_arn,\n",
    ")\n",
    "client.get_recommendations(user_id=\"1\")"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "source": [
    "### 2.2 [Use-case-2] Invoke Personalize Chain for summarizing results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "outputs": [],
   "source": [
    "from langchain.llms.bedrock import Bedrock\n",
    "from langchain_experimental.recommenders import AmazonPersonalizeChain\n",
    "\n",
    "bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
    "\n",
    "# Create personalize chain\n",
    "# Use return_direct=True if you do not want summary\n",
    "chain = AmazonPersonalizeChain.from_llm(\n",
    "    llm=bedrock_llm, client=client, return_direct=False\n",
    ")\n",
    "response = chain({\"user_id\": \"1\"})\n",
    "print(response)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.3 [Use-Case-3] Invoke Amazon Personalize Chain using your own prompt"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.prompts.prompt import PromptTemplate\n",
    "\n",
    "RANDOM_PROMPT_QUERY = \"\"\"\n",
    "You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
    "    given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
    "    The movies to recommend and their information is contained in the <movie> tag. \n",
    "    All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
    "    Put the email between <email> tags.\n",
    "\n",
    "    <movie>\n",
    "    {result} \n",
    "    </movie>\n",
    "\n",
    "    Assistant:\n",
    "    \"\"\"\n",
    "\n",
    "RANDOM_PROMPT = PromptTemplate(input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY)\n",
    "\n",
    "chain = AmazonPersonalizeChain.from_llm(\n",
    "    llm=bedrock_llm, client=client, return_direct=False, prompt_template=RANDOM_PROMPT\n",
    ")\n",
    "chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {},
   "source": [
    "### 2.4 [Use-case-4] Invoke Amazon Personalize in a Sequential Chain "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {},
   "outputs": [],
   "source": [
    "from langchain.chains import LLMChain, SequentialChain\n",
    "\n",
    "RANDOM_PROMPT_QUERY_2 = \"\"\"\n",
    "You are a skilled publicist. Write a high-converting marketing email advertising several movies available in a video-on-demand streaming platform next week, \n",
    "    given the movie and user information below. Your email will leverage the power of storytelling and persuasive language. \n",
    "    You want the email to impress the user, so make it appealing to them.\n",
    "    The movies to recommend and their information is contained in the <movie> tag. \n",
    "    All movies in the <movie> tag must be recommended. Give a summary of the movies and why the human should watch them. \n",
    "    Put the email between <email> tags.\n",
    "\n",
    "    <movie>\n",
    "    {result}\n",
    "    </movie>\n",
    "\n",
    "    Assistant:\n",
    "    \"\"\"\n",
    "\n",
    "RANDOM_PROMPT_2 = PromptTemplate(\n",
    "    input_variables=[\"result\"], template=RANDOM_PROMPT_QUERY_2\n",
    ")\n",
    "personalize_chain_instance = AmazonPersonalizeChain.from_llm(\n",
    "    llm=bedrock_llm, client=client, return_direct=True\n",
    ")\n",
    "random_chain_instance = LLMChain(llm=bedrock_llm, prompt=RANDOM_PROMPT_2)\n",
    "overall_chain = SequentialChain(\n",
    "    chains=[personalize_chain_instance, random_chain_instance],\n",
    "    input_variables=[\"user_id\"],\n",
    "    verbose=True,\n",
    ")\n",
    "overall_chain.run({\"user_id\": \"1\", \"item_id\": \"234\"})"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "source": [
    "### 2.5 [Use-case-5] Invoke Amazon Personalize and retrieve metadata "
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "outputs": [],
   "source": [
    "recommender_arn = \"<insert_arn>\"\n",
    "metadata_column_names = [\n",
    "    \"<insert metadataColumnName-1>\",\n",
    "    \"<insert metadataColumnName-2>\",\n",
    "]\n",
    "metadataMap = {\"ITEMS\": metadata_column_names}\n",
    "\n",
    "client = AmazonPersonalize(\n",
    "    credentials_profile_name=\"default\",\n",
    "    region_name=\"us-west-2\",\n",
    "    recommender_arn=recommender_arn,\n",
    ")\n",
    "client.get_recommendations(user_id=\"1\", metadataColumns=metadataMap)"
   ]
  },
  {
   "cell_type": "markdown",
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "source": [
    "### 2.6 [Use-Case 6] Invoke Personalize Chain with returned metadata for summarizing results"
   ]
  },
  {
   "cell_type": "code",
   "execution_count": null,
   "metadata": {
    "collapsed": false,
    "jupyter": {
     "outputs_hidden": false
    }
   },
   "outputs": [],
   "source": [
    "bedrock_llm = Bedrock(model_id=\"anthropic.claude-v2\", region_name=\"us-west-2\")\n",
    "\n",
    "# Create personalize chain\n",
    "# Use return_direct=True if you do not want summary\n",
    "chain = AmazonPersonalizeChain.from_llm(\n",
    "    llm=bedrock_llm, client=client, return_direct=False\n",
    ")\n",
    "response = chain({\"user_id\": \"1\", \"metadata_columns\": metadataMap})\n",
    "print(response)"
   ]
  }
 ],
 "metadata": {
  "kernelspec": {
   "display_name": "Python 3 (ipykernel)",
   "language": "python",
   "name": "python3"
  },
  "language_info": {
   "codemirror_mode": {
    "name": "ipython",
    "version": 3
   },
   "file_extension": ".py",
   "mimetype": "text/x-python",
   "name": "python",
   "nbconvert_exporter": "python",
   "pygments_lexer": "ipython3",
   "version": "3.11.7"
  },
  "vscode": {
   "interpreter": {
    "hash": "15e58ce194949b77a891bd4339ce3d86a9bd138e905926019517993f97db9e6c"
   }
  }
 },
 "nbformat": 4,
 "nbformat_minor": 4
}