File size: 9,245 Bytes
5030f92
c2c8656
5030f92
eac20da
5030f92
 
 
819498b
 
5030f92
 
 
 
 
 
 
 
 
d6ca2e6
5030f92
 
 
 
 
 
 
 
 
eac20da
5e4d301
 
 
5030f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
c2c8656
 
 
 
 
 
 
 
 
 
 
 
 
 
5030f92
 
 
 
c2c8656
5030f92
 
 
 
 
 
 
 
d6ca2e6
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
5030f92
 
d6ca2e6
 
 
 
5030f92
 
d6ca2e6
a16485e
 
 
5030f92
 
 
d6ca2e6
 
5030f92
 
5e4d301
 
 
 
 
 
5030f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eac20da
5030f92
eac20da
 
5030f92
 
 
 
 
eac20da
d6ca2e6
 
 
5030f92
 
 
 
d6ca2e6
5030f92
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
eac20da
5030f92
 
5e4d301
5030f92
 
 
 
eac20da
 
d6ca2e6
 
eac20da
5030f92
d6ca2e6
5030f92
 
 
 
 
 
eac20da
 
5030f92
d6ca2e6
 
 
 
 
 
 
eac20da
 
 
 
d6ca2e6
5030f92
 
eac20da
 
 
 
5030f92
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
import os
import torch

import gradio as gr
from dotenv import load_dotenv
from langchain.callbacks.base import BaseCallbackHandler
from langchain.embeddings import CacheBackedEmbeddings
from langchain_community.retrievers import BM25Retriever
from langchain.retrievers import EnsembleRetriever
from langchain.storage import LocalFileStore
from langchain_anthropic import ChatAnthropic
from langchain_community.chat_models import ChatOllama
from langchain_community.document_loaders import NotebookLoader, TextLoader
from langchain_community.document_loaders.generic import GenericLoader
from langchain_community.document_loaders.parsers.language.language_parser import (
    LanguageParser,
)
from langchain_community.embeddings import HuggingFaceBgeEmbeddings
from langchain_community.vectorstores import FAISS, Chroma
from langchain_core.callbacks.manager import CallbackManager
from langchain_core.callbacks.streaming_stdout import StreamingStdOutCallbackHandler
from langchain_core.output_parsers import StrOutputParser
from langchain_core.prompts import PromptTemplate
from langchain_core.runnables import ConfigurableField, RunnablePassthrough
from langchain_google_genai import GoogleGenerativeAI
from langchain_groq import ChatGroq
from langchain_openai import ChatOpenAI, OpenAIEmbeddings
from langchain_text_splitters import Language, RecursiveCharacterTextSplitter

from langchain_cohere import CohereRerank
from langchain.retrievers.contextual_compression import ContextualCompressionRetriever

# Load environment variables
load_dotenv()

# Repository directories
repo_root_dir = "./docs/langchain"
repo_dirs = [
    "libs/core/langchain_core",
    "libs/community/langchain_community",
    "libs/experimental/langchain_experimental",
    "libs/partners",
    "libs/cookbook",
]
repo_dirs = [os.path.join(repo_root_dir, repo) for repo in repo_dirs]

# Load Python documents
py_documents = []
for path in repo_dirs:
    py_loader = GenericLoader.from_filesystem(
        path,
        glob="**/*",
        suffixes=[".py"],
        parser=LanguageParser(language=Language.PYTHON, parser_threshold=30),
    )
    py_documents.extend(py_loader.load())
print(f".py 파일의 개수: {len(py_documents)}")

# Load Markdown documents
mdx_documents = []
for dirpath, _, filenames in os.walk(repo_root_dir):
    for file in filenames:
        if file.endswith(".mdx") and "*venv/" not in dirpath:
            try:
                mdx_loader = TextLoader(os.path.join(dirpath, file), encoding="utf-8")
                mdx_documents.extend(mdx_loader.load())
            except Exception:
                pass
print(f".mdx 파일의 개수: {len(mdx_documents)}")

# Load Jupyter Notebook documents
ipynb_documents = []
for dirpath, _, filenames in os.walk(repo_root_dir):
    for file in filenames:
        if file.endswith(".ipynb") and "*venv/" not in dirpath:
            try:
                ipynb_loader = NotebookLoader(
                    os.path.join(dirpath, file),
                    include_outputs=True,
                    max_output_length=20,
                    remove_newline=True,
                )
                ipynb_documents.extend(ipynb_loader.load())
            except Exception:
                pass
print(f".ipynb 파일의 개수: {len(ipynb_documents)}")


# Split documents into chunks
def split_documents(documents, language, chunk_size=2000, chunk_overlap=200):
    splitter = RecursiveCharacterTextSplitter.from_language(
        language=language, chunk_size=chunk_size, chunk_overlap=chunk_overlap
    )
    return splitter.split_documents(documents)


py_docs = split_documents(py_documents, Language.PYTHON)
mdx_docs = split_documents(mdx_documents, Language.MARKDOWN)
ipynb_docs = split_documents(ipynb_documents, Language.PYTHON)

print(f"λΆ„ν• λœ .py 파일의 개수: {len(py_docs)}")
print(f"λΆ„ν• λœ .mdx 파일의 개수: {len(mdx_docs)}")
print(f"λΆ„ν• λœ .ipynb 파일의 개수: {len(ipynb_docs)}")

combined_documents = py_docs + mdx_docs + ipynb_docs
print(f"총 λ„νλ¨ΌνŠΈ 개수: {len(combined_documents)}")


# Define the device setting function
def get_device():
    if torch.cuda.is_available():
        return "cuda:0"
    elif torch.backends.mps.is_available():
        return "mps"
    else:
        return "cpu"


# Use the function to set the device in model_kwargs
device = get_device()

# Initialize embeddings and cache
store = LocalFileStore("~/.cache/embedding")
embeddings = HuggingFaceBgeEmbeddings(
    model_name="BAAI/bge-m3",
    model_kwargs={"device": device},
    encode_kwargs={"normalize_embeddings": True},
)
cached_embeddings = CacheBackedEmbeddings.from_bytes_store(
    embeddings, store, namespace=embeddings.model_name
)

# Create and save FAISS index
FAISS_DB_INDEX = "./langchain_faiss"
# faiss_db = FAISS.from_documents(
#     documents=combined_documents,
#     embedding=cached_embeddings,
# )
# faiss_db.save_local(folder_path=FAISS_DB_INDEX)

# Create and save Chroma index
CHROMA_DB_INDEX = "./langchain_chroma"
# chroma_db = Chroma.from_documents(
#     documents=combined_documents,
#     embedding=cached_embeddings,
#     persist_directory=CHROMA_DB_INDEX,
# )

# load vectorstore
faiss_db = FAISS.load_local(
    FAISS_DB_INDEX, cached_embeddings, allow_dangerous_deserialization=True
)
chroma_db = Chroma(
    embedding_function=cached_embeddings,
    persist_directory=CHROMA_DB_INDEX,
)

# Create retrievers
faiss_retriever = faiss_db.as_retriever(search_type="mmr", search_kwargs={"k": 10})
chroma_retriever = chroma_db.as_retriever(
    search_type="similarity", search_kwargs={"k": 10}
)
bm25_retriever = BM25Retriever.from_documents(combined_documents)
bm25_retriever.k = 10
ensemble_retriever = EnsembleRetriever(
    retrievers=[bm25_retriever, faiss_retriever, chroma_retriever],
    weights=[0.4, 0.3, 0.3],
)

compressor = CohereRerank(model="rerank-multilingual-v3.0", top_n=10)
compression_retriever = ContextualCompressionRetriever(
    base_compressor=compressor,
    base_retriever=ensemble_retriever,
)

# Create prompt template
prompt = PromptTemplate.from_template(
    """당신은 20λ…„μ°¨ AI κ°œλ°œμžμž…λ‹ˆλ‹€. λ‹Ήμ‹ μ˜ μž„λ¬΄λŠ” 주어진 μ§ˆλ¬Έμ— λŒ€ν•˜μ—¬ μ΅œλŒ€ν•œ λ¬Έμ„œμ˜ 정보λ₯Ό ν™œμš©ν•˜μ—¬ λ‹΅λ³€ν•˜λŠ” κ²ƒμž…λ‹ˆλ‹€.
λ¬Έμ„œλŠ” Python μ½”λ“œμ— λŒ€ν•œ 정보λ₯Ό λ‹΄κ³  μžˆμŠ΅λ‹ˆλ‹€. λ”°λΌμ„œ, 닡변을 μž‘μ„±ν•  λ•Œμ—λŠ” Python μ½”λ“œμ— λŒ€ν•œ μƒμ„Έν•œ code snippet을 ν¬ν•¨ν•˜μ—¬ μž‘μ„±ν•΄μ£Όμ„Έμš”.
μ΅œλŒ€ν•œ μžμ„Έν•˜κ²Œ λ‹΅λ³€ν•˜κ³ , ν•œκΈ€λ‘œ λ‹΅λ³€ν•΄ μ£Όμ„Έμš”. 주어진 λ¬Έμ„œμ—μ„œ 닡변을 찾을 수 μ—†λŠ” 경우, "λ¬Έμ„œμ— 닡변이 μ—†μŠ΅λ‹ˆλ‹€."라고 λ‹΅λ³€ν•΄ μ£Όμ„Έμš”.
닡변은 좜처(source)λ₯Ό λ°˜λ“œμ‹œ ν‘œκΈ°ν•΄ μ£Όμ„Έμš”.

#μ°Έκ³ λ¬Έμ„œ:
{context}

#질문:
{question}

#λ‹΅λ³€: 

좜처:
- source1
- source2
- ...
"""
)


# Define callback handler for streaming
class StreamCallback(BaseCallbackHandler):
    def on_llm_new_token(self, token: str, **kwargs):
        print(token, end="", flush=True)


streaming = os.getenv("STREAMING", "true") == "true"
print("STREAMING", streaming)

# Initialize LLMs with configuration
llm = ChatOpenAI(
    model="gpt-4o",
    temperature=0,
    streaming=streaming,
    callbacks=[StreamCallback()],
).configurable_alternatives(
    ConfigurableField(id="llm"),
    default_key="gpt4",
    claude=ChatAnthropic(
        model="claude-3-opus-20240229",
        temperature=0,
        streaming=True,
        callbacks=[StreamCallback()],
    ),
    gpt3=ChatOpenAI(
        model="gpt-3.5-turbo",
        temperature=0,
        streaming=True,
        callbacks=[StreamCallback()],
    ),
    gemini=GoogleGenerativeAI(
        model="gemini-1.5-flash",
        temperature=0,
        streaming=True,
        callbacks=[StreamCallback()],
    ),
    llama3=ChatGroq(
        model_name="llama3-70b-8192",
        temperature=0,
        streaming=True,
        callbacks=[StreamCallback()],
    ),
    ollama=ChatOllama(
        model="EEVE-Korean-10.8B:long",
        callback_manager=CallbackManager([StreamingStdOutCallbackHandler()]),
    ),
)

# Create retrieval-augmented generation chain
rag_chain = (
    {"context": compression_retriever, "question": RunnablePassthrough()}
    | prompt
    | llm
    | StrOutputParser()
)


model_key = os.getenv("MODEL_KEY", "gemini")
print("MODEL_KEY", model_key)


def respond_stream(
    message,
    history: list[tuple[str, str]],
):
    response = ""
    for chunk in rag_chain.with_config(configurable={"llm": model_key}).stream(message):
        response += chunk
        yield response


def respond(
    message,
    history: list[tuple[str, str]],
):
    return rag_chain.with_config(configurable={"llm": model_key}).invoke(message)


"""
For information on how to customize the ChatInterface, peruse the gradio docs: https://www.gradio.app/docs/chatinterface
"""
demo = gr.ChatInterface(
    respond_stream if streaming else respond,
    title="λž­μ²΄μΈμ— λŒ€ν•΄μ„œ λ¬Όμ–΄λ³΄μ„Έμš”!",
    description="μ•ˆλ…•ν•˜μ„Έμš”!\nμ €λŠ” λž­μ²΄μΈμ— λŒ€ν•œ 인곡지λŠ₯ QAλ΄‡μž…λ‹ˆλ‹€. λž­μ²΄μΈμ— λŒ€ν•΄ κΉŠμ€ 지식을 가지고 μžˆμ–΄μš”. 랭체인 κ°œλ°œμ— κ΄€ν•œ 도움이 ν•„μš”ν•˜μ‹œλ©΄ μ–Έμ œλ“ μ§€ μ§ˆλ¬Έν•΄μ£Όμ„Έμš”!",
)


if __name__ == "__main__":
    demo.launch()