Spaces:
Runtime error
Runtime error
import gradio as gr | |
from gradio_leaderboard import Leaderboard, ColumnFilter, SelectColumns | |
import pandas as pd | |
from apscheduler.schedulers.background import BackgroundScheduler | |
from huggingface_hub import snapshot_download | |
from src.about import ( | |
CITATION_BUTTON_LABEL, | |
CITATION_BUTTON_TEXT, | |
EVALUATION_QUEUE_TEXT, | |
INTRODUCTION_TEXT, | |
ABOUT_TEXT, | |
TITLE, | |
Training_Dataset, | |
Testing_Type | |
) | |
from src.display.css_html_js import custom_css | |
from src.display.utils import ( | |
BENCHMARK_COLS, | |
COLS, | |
EVAL_COLS, | |
EVAL_TYPES, | |
AutoEvalColumn, | |
ModelType, | |
fields, | |
Precision | |
) | |
from src.envs import API, EVAL_REQUESTS_PATH, EVAL_RESULTS_PATH, QUEUE_REPO, REPO_ID, RESULTS_REPO, TOKEN | |
from src.populate import get_evaluation_queue_df, get_leaderboard_df | |
from src.submission.submit import add_new_eval | |
def restart_space(): | |
API.restart_space(repo_id=REPO_ID) | |
### Space initialisation | |
try: | |
snapshot_download( | |
repo_id=QUEUE_REPO, local_dir=EVAL_REQUESTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
try: | |
snapshot_download( | |
repo_id=RESULTS_REPO, local_dir=EVAL_RESULTS_PATH, repo_type="dataset", tqdm_class=None, etag_timeout=30, token=TOKEN | |
) | |
except Exception: | |
restart_space() | |
LEADERBOARD_DF = get_leaderboard_df(EVAL_RESULTS_PATH, EVAL_REQUESTS_PATH, COLS, BENCHMARK_COLS) | |
( | |
finished_eval_queue_df, | |
pending_eval_queue_df, | |
) = get_evaluation_queue_df(EVAL_REQUESTS_PATH, EVAL_COLS) | |
def init_leaderboard(dataframe): | |
if dataframe is None or dataframe.empty: | |
raise ValueError("Leaderboard DataFrame is empty or None.") | |
with gr.Tabs(elem_classes="leaderboard-tabs") as leaderboard_tabs: | |
for testing_type in Testing_Type: | |
with gr.TabItem("Average Scores" if testing_type.value == "avg" else testing_type.name, elem_id=f"{testing_type.value}_Leaderboard"): | |
if testing_type.value == "avg": | |
gr.Markdown("The scores presented in this tab are averaged scores across all datasets.") | |
try: | |
leaderboard = Leaderboard( | |
value=dataframe[dataframe["Testing Type"] == testing_type.name], | |
datatype=[c.type for c in fields(AutoEvalColumn)], | |
select_columns=SelectColumns( | |
default_selection=[c.name for c in fields(AutoEvalColumn) if c.displayed_by_default], | |
cant_deselect=[c.name for c in fields(AutoEvalColumn) if c.never_hidden], | |
label="Select Columns to Display:", | |
), | |
search_columns=[AutoEvalColumn.model_name.name], | |
hide_columns=[c.name for c in fields(AutoEvalColumn) if c.hidden], | |
filter_columns=[ | |
ColumnFilter(AutoEvalColumn.precision.name, type="checkboxgroup", label="Precision"), | |
ColumnFilter(AutoEvalColumn.training_dataset_type.name, type="checkboxgroup", label="Training Dataset"), | |
ColumnFilter( | |
AutoEvalColumn.model_parameters.name, | |
type="slider", | |
min=0, | |
max=10000, | |
default=["0", "100"], | |
label="Select the number of parameters (M)", | |
), | |
], | |
bool_checkboxgroup_label="Hide Models", | |
interactive=False, | |
) | |
except: | |
gr.Markdown("There are no submissions for this testing type yet.") | |
def init_submissions(): | |
with gr.Column(): | |
with gr.Row(): | |
gr.Markdown(EVALUATION_QUEUE_TEXT, elem_classes="markdown-text") | |
with gr.Column(): | |
with gr.Accordion( | |
f"β Finished Evaluations ({len(finished_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
finished_eval_table = gr.components.Dataframe( | |
value=finished_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Accordion( | |
f"β³ Pending Evaluation Queue ({len(pending_eval_queue_df)})", | |
open=False, | |
): | |
with gr.Row(): | |
pending_eval_table = gr.components.Dataframe( | |
value=pending_eval_queue_df, | |
headers=EVAL_COLS, | |
datatype=EVAL_TYPES, | |
row_count=5, | |
) | |
with gr.Row(): | |
gr.Markdown("# βοΈβ¨ Submit your model here!", elem_classes="markdown-text") | |
with gr.Row(): | |
with gr.Column(): | |
model_name_textbox = gr.Textbox(label="Model name") | |
model_link_textbox = gr.Textbox(label="Link to Model") | |
model_backbone_textbox = gr.Dropdown( | |
choices=["Original"], | |
label="Model Backbone", | |
value="Original", | |
allow_custom_value=True, | |
) | |
model_parameter_number = gr.Number(label="Model Parameter Count (M)", precision=1, minimum=0) | |
precision = gr.Dropdown( | |
choices=[i.name for i in Precision], | |
label="Precision", | |
multiselect=False, | |
value="float32", | |
interactive=True, | |
) | |
paper_name_textbox = gr.Textbox(label="Paper Name") | |
paper_link_textbox = gr.Textbox(label="Link To Paper") | |
with gr.Column(): | |
training_dataset = gr.Dropdown( | |
choices=[i.value for i in Training_Dataset if i.value != Training_Dataset.Other.value], | |
label="Training Dataset", | |
multiselect=False, | |
value=Training_Dataset.XCL.value, | |
interactive=True, | |
allow_custom_value=True, | |
) | |
testing_type = gr.Dropdown( | |
choices=[i.name for i in Testing_Type], | |
label="Tested on", | |
multiselect=False, | |
value=Testing_Type.AVG.name, | |
interactive=True, | |
) | |
cmap_value = gr.Number(label="cmAP Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01) | |
auroc_value = gr.Number(label="AUROC Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01) | |
t1acc_value = gr.Number(label="T1-Acc Performance", precision=2, minimum=0.00, maximum=1.00, step=0.01) | |
submit_button = gr.Button("Submit Eval") | |
submission_result = gr.Markdown() | |
submit_button.click( | |
fn=add_new_eval, | |
inputs=[ | |
model_name_textbox, | |
model_link_textbox, | |
model_backbone_textbox, | |
precision, | |
model_parameter_number, | |
paper_name_textbox, | |
paper_link_textbox, | |
training_dataset, | |
testing_type, | |
cmap_value, | |
auroc_value, | |
t1acc_value, | |
], | |
outputs=submission_result, | |
) | |
demo = gr.Blocks(css=custom_css) | |
with demo: | |
gr.HTML(TITLE) | |
gr.Markdown(INTRODUCTION_TEXT, elem_classes="markdown-text") | |
with gr.Tabs(elem_classes="tab-buttons") as tabs: | |
with gr.TabItem("π Leaderboard", elem_id="leaderboard-tab-table", id=0): | |
init_leaderboard(LEADERBOARD_DF) | |
with gr.TabItem("π About", elem_id="leaderboard-tab-table", id=2): | |
gr.Markdown(ABOUT_TEXT, elem_classes="markdown-text") | |
with gr.TabItem("π Submit here! ", elem_id="leaderboard-tab-table", id=3): | |
init_submissions() | |
with gr.Row(): | |
with gr.Accordion("π Citation", open=False): | |
citation_button = gr.Textbox( | |
value=CITATION_BUTTON_TEXT, | |
label=CITATION_BUTTON_LABEL, | |
lines=20, | |
elem_id="citation-button", | |
show_copy_button=True, | |
) | |
scheduler = BackgroundScheduler() | |
scheduler.add_job(restart_space, "interval", seconds=1800) | |
scheduler.start() | |
demo.launch() | |