BiasTestGPT / mgr_requests.py
anon4757's picture
Upload 11 files
c05c725
raw
history blame
8.78 kB
import pandas as pd
import gradio as gr
import hashlib, base64
import openai
from tqdm import tqdm
tqdm().pandas()
# querying OpenAI for generation
import openAI_manager as oai_mgr
#import initOpenAI, examples_to_prompt, genChatGPT, generateTestSentences
# bias testing manager
import mgr_bias_scoring as bt_mgr
import mgr_sentences as smgr
# error messages
from error_messages import *
G_CORE_BIAS_NAME = None
# hashing
def getHashForString(text):
d=hashlib.md5(bytes(text, encoding='utf-8')).digest()
d=base64.urlsafe_b64encode(d)
return d.decode('utf-8')
def getBiasName(gr1_lst, gr2_lst, att1_lst, att2_lst):
global G_CORE_BIAS_NAME
bias_name = G_CORE_BIAS_NAME
if bias_name == None:
full_spec = ''.join(gr1_lst)+''.join(gr2_lst)+''.join(att1_lst)+''.join(att2_lst)
hash = getHashForString(full_spec)
bias_name = f"{gr1_lst[0].replace(' ','-')}_{gr2_lst[0].replace(' ','-')}__{att1_lst[0].replace(' ','-')}_{att2_lst[0].replace(' ','-')}_{hash}"
return bias_name
def _generateOnline(bias_spec, progress, key, num2gen, isSaving=False):
test_sentences = []
gen_err_msg = None
genAttrCounts = {}
print(f"Bias spec dict: {bias_spec}")
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
print(f"A1: {a1}")
print(f"A2: {a2}")
if "custom_counts" in bias_spec:
print("Bias spec is custom !!")
genAttrCounts = bias_spec['custom_counts'][0]
for a,c in bias_spec['custom_counts'][1].items():
genAttrCounts[a] = c
else:
print("Bias spec is standard !!")
genAttrCounts = {a:num2gen for a in a1+a2}
# Initiate with key
try:
models = oai_mgr.initOpenAI(key)
model_names = [m['id'] for m in models['data']]
print(f"Model names: {model_names}")
except openai.error.AuthenticationError as err:
#raise gr.Error(OPENAI_INIT_ERROR.replace("<ERR>", str(err)))
gen_err_msg = OPENAI_INIT_ERROR.replace("<ERR>", str(err))
if gen_err_msg != None:
return [], gen_err_msg
else:
if "gpt-3.5-turbo" in model_names:
print("Access to ChatGPT")
if "gpt-4" in model_names:
print("Access to GPT-4")
model_name = "gpt-3.5-turbo" #"gpt-4"
# Generate one example
#gen = genChatGPT(model_name, ["man","math"], 2, 5,
# [{"Keywords": ["sky","blue"], "Sentence": "the sky is blue"}
# ],
# temperature=0.8)
#print(f"Test gen: {gen}")
# Generate all test sentences
#gens = oai_mgr.generateTestSentences(model_name, g1+g2, a1+a2, num2gen, progress)
gens = oai_mgr.generateTestSentencesCustom(model_name, g1, g2, a1+a2, genAttrCounts, bias_spec, progress)
print("--GENS--")
print(gens)
if len(gens) == 0:
print("No sentences generated, returning")
return [], gen_err_msg
for org_gt, at, s, gt1, gt2 in gens:
test_sentences.append([s,org_gt,at,gt1,gt2])
# save the generations immediately
print("Making save dataframe...")
save_df = pd.DataFrame(test_sentences, columns=["Sentence",'org_grp_term',
"Attribute term", "Group term 1",
"Group term 2"])
## make the templates to save
# 1. bias specification
print(f"Bias spec dict: {bias_spec}")
# generate laternative sentence
print(f"Columns before alternative sentence: {list(save_df.columns)}")
save_df['Alternative Sentence'] = save_df.progress_apply(oai_mgr.chatgpt_sentence_alternative, axis=1, model_name=model_name)
print(f"Columns after alternative sentence: {list(save_df.columns)}")
# 2. convert to templates
save_df['Template'] = save_df.progress_apply(bt_mgr.sentence_to_template_df, axis=1)
print("Convert generated sentences to templates...")
save_df[['Alternative Template','grp_refs']] = save_df.progress_apply(bt_mgr.ref_terms_sentence_to_template, axis=1)
print(f"Columns with templates: {list(save_df.columns)}")
# 3. convert to pairs
print("Convert generated sentences to ordered pairs...")
test_pairs_df = bt_mgr.convert2pairsFromDF(bias_spec, save_df)
print(f"Test pairs cols: {list(test_pairs_df.columns)}")
bias_name = getBiasName(g1, g2, a1, a2)
save_df = save_df.rename(columns={"Sentence":'sentence',
"Alternative Sentence":"alt_sentence",
"Attribute term": 'att_term',
"Template":"template",
"Alternative Template": "alt_template",
"Group term 1": "grp_term1",
"Group term 2": "grp_term2"})
save_df['label_1'] = test_pairs_df['label_1']
save_df['label_2'] = test_pairs_df['label_2']
save_df['bias_spec'] = bias_name
save_df['type'] = 'tool'
save_df['gen_model'] = model_name
col_order = ["sentence", "alt_sentence", "org_grp_term", "att_term", "template",
"alt_template", "grp_term1", "grp_term2", "grp_refs", "label_1", "label_2",
"bias_spec", "type", "gen_model"]
save_df = save_df[col_order]
print(f"Save cols prep: {list(save_df.columns)}")
if isSaving == True:
print(f"Saving: {save_df.head(1)}")
smgr.saveSentences(save_df) #[["Group term","Attribute term","Test sentence"]])
num_sentences = len(test_sentences)
print(f"Returned num sentences: {num_sentences}")
# list for Gradio dataframe
ret_df = [list(r.values) for i, r in save_df[['sentence', 'alt_sentence', 'grp_term1', 'grp_term2', "att_term"]].iterrows()]
print(ret_df)
return ret_df, gen_err_msg
def _getSavedSentences(bias_spec, progress, use_paper_sentences):
test_sentences = []
print(f"Bias spec dict: {bias_spec}")
g1, g2, a1, a2 = bt_mgr.get_words(bias_spec)
for gi, g_term in enumerate(g1+g2):
att_list = a1+a2
grp_list = g1+g2
# match "-" and no space
att_list_dash = [t.replace(' ','-') for t in att_list]
att_list.extend(att_list_dash)
att_list_nospace = [t.replace(' ','') for t in att_list]
att_list.extend(att_list_nospace)
att_list = list(set(att_list))
progress(gi/len(g1+g2), desc=f"{g_term}")
_, sentence_df, _ = smgr.getSavedSentences(g_term)
# only take from paper & gpt3.5
flt_gen_models = ["gpt-3.5","gpt-3.5-turbo","gpt-4"]
print(f"Before filter: {sentence_df.shape[0]}")
if use_paper_sentences == True:
if 'type' in list(sentence_df.columns):
sentence_df = sentence_df.query("type=='paper' and gen_model in @flt_gen_models")
print(f"After filter: {sentence_df.shape[0]}")
else:
if 'type' in list(sentence_df.columns):
# only use GPT-3.5 generations for now - todo: add settings option for this
sentence_df = sentence_df.query("gen_model in @flt_gen_models")
print(f"After filter: {sentence_df.shape[0]}")
if sentence_df.shape[0] > 0:
sentence_df = sentence_df[['grp_term1','grp_term2','att_term','sentence','alt_sentence']]
sentence_df = sentence_df.rename(columns={'grp_term1': "Group term 1",
'grp_term2': "Group term 2",
"att_term": "Attribute term",
"sentence": "Sentence",
"alt_sentence": "Alt Sentence"})
sel = sentence_df[(sentence_df['Attribute term'].isin(att_list)) & \
((sentence_df['Group term 1'].isin(grp_list)) & (sentence_df['Group term 2'].isin(grp_list))) ].values
if len(sel) > 0:
for gt1,gt2,at,s,a_s in sel:
#if at == "speech-language-pathologist":
# print(f"Special case: {at}")
# at == "speech-language pathologist" # legacy, special case
#else:
#at = at #.replace("-"," ")
#gt = gt #.replace("-"," ")
test_sentences.append([s,a_s,gt1,gt2,at])
else:
print("Test sentences empty!")
#raise gr.Error(NO_SENTENCES_ERROR)
return test_sentences