Spaces:
Build error
Build error
File size: 13,234 Bytes
0d99179 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 |
import base64
import os
from io import BytesIO
from pathlib import Path
from langchain.schema.output_parser import OutputParserException
import gradio as gr
from PIL import Image
import categories
from categories import Category
from main import process_image, process_pdf
HF_TOKEN = os.getenv("HF_TOKEN")
PDF_IFRAME = """
<div style="border-radius: 10px; width: 100%; overflow: hidden;">
<iframe
src="data:application/pdf;base64,{0}"
width="100%"
height="400"
type="application/pdf">
</iframe>
</div>"""
hf_writer_normal = gr.HuggingFaceDatasetSaver(
HF_TOKEN, "automatic-reimbursement-tool-demo", separate_dirs=False
)
hf_writer_incorrect = gr.HuggingFaceDatasetSaver(
HF_TOKEN, "automatic-reimbursement-tool-demo-incorrect", separate_dirs=False
)
# with open("examples/example1.pdf", "rb") as pdf_file:
# base64_pdf = base64.b64encode(pdf_file.read())
# example_paths = []
# current_file_path = None
# def ignore_examples(function):
# def new_function(*args, **kwargs):
# global example_paths, current_file_path
# if current_file_path not in example_paths:
# return function(*args, **kwargs)
def display_file(input_file):
global current_file_path
current_file_path = input_file.name if input_file else None
if not input_file:
return gr.HTML.update(visible=False), gr.Image.update(visible=False)
if input_file.name.endswith(".pdf"):
with open(input_file.name, "rb") as input_file:
pdf_base64 = base64.b64encode(input_file.read()).decode()
return gr.HTML.update(
PDF_IFRAME.format(pdf_base64), visible=True
), gr.Image.update(visible=False)
else:
# image = Image.open(input_file.name)
return gr.HTML.update(visible=False), gr.Image.update(
input_file.name, visible=True
)
def show_intermediate_outputs(show_intermediate):
if show_intermediate:
return gr.Accordion.update(visible=True)
else:
return gr.Accordion.update(visible=False)
def show_share_contact(share_result):
return gr.Textbox.update(visible=share_result)
def clear_inputs():
return gr.File.update(value=None)
def submit(input_file, old_text):
if not input_file:
gr.Error("Please upload a file to continue!")
return gr.Textbox.update()
# Send change to preprocessed image or to extracted text
if input_file.name.endswith(".pdf"):
text = process_pdf(Path(input_file.name), extract_only=True)
else:
text = process_image(Path(input_file.name), extract_only=True)
return text
def categorize_extracted_text(extracted_text):
category = categories.categorize_text(extracted_text)
# gr.Info(f"Recognized category: {category}")
return category
def extract_from_category(category, extracted_text):
# gr.Info("Received category: " + category)
if not category:
return (
gr.Chatbot.update(None),
gr.JSON.update(None),
gr.Button.update(interactive=False),
gr.Button.update(interactive=False),
)
category = Category[category]
chain = categories.category_modules[category].chain
formatted_prompt = chain.prompt.format_prompt(
text=extracted_text,
format_instructions=chain.output_parser.get_format_instructions(),
)
result = chain.generate(
input_list=[
{
"text": extracted_text,
"format_instructions": chain.output_parser.get_format_instructions(),
}
]
)
question = f""
if len(formatted_prompt.messages) > 1:
question += f"**System:**\n{formatted_prompt.messages[1].content}"
question += f"\n\n**Human:**\n{formatted_prompt.messages[0].content}"
answer = result.generations[0][0].text
try:
information = chain.output_parser.parse_with_prompt(answer, formatted_prompt)
information = information.json() if information else {}
except OutputParserException as e:
information = {
"error": "Unable to parse chatbot output",
"details": str(e),
"output": e.llm_output,
}
return (
gr.Chatbot.update([[question, answer]]),
gr.JSON.update(information),
gr.Button.update(interactive=True),
gr.Button.update(interactive=True),
)
def dynamic_auto_flag(flag_method):
def modified_flag_method(share_result, *args, **kwargs):
if share_result:
flag_method(*args, **kwargs)
return modified_flag_method
# def save_example_and_submit(input_file):
# example_paths.append(input_file.name)
# submit(input_file, "")
with gr.Blocks(title="Automatic Reimbursement Tool Demo") as page:
gr.Markdown("<center><h1>Automatic Reimbursement Tool Demo</h1></center>")
gr.Markdown("<h2>Description</h2>")
gr.Markdown(
"The reimbursement filing process can be time-consuming and cumbersome, causing "
"frustration for faculty members and finance departments. Our project aims to "
"automate the information extraction involved in the process by feeding "
"extracted text to language models such as ChatGPT. This demo showcases the "
"categorization and extraction parts of the pipeline. Categorization is done "
"to identify the relevant details associated with the text, after which "
"extraction is done for those details using a language model."
)
gr.Markdown("<h2>Try it out!</h2>")
with gr.Box() as demo:
with gr.Row():
with gr.Column(variant="panel"):
gr.HTML(
'<div><center style="color:rgb(200, 200, 200);">Input</center></div>'
)
pdf_preview = gr.HTML(label="Preview", show_label=True, visible=False)
image_preview = gr.Image(
label="Preview", show_label=True, visible=False, height=350
)
input_file = gr.File(
label="Input receipt",
show_label=True,
type="file",
file_count="single",
file_types=["image", ".pdf"],
)
input_file.change(
display_file, input_file, [pdf_preview, image_preview]
)
with gr.Row():
clear = gr.Button("Clear", variant="secondary")
submit_button = gr.Button("Submit", variant="primary")
show_intermediate = gr.Checkbox(
False,
label="Show intermediate outputs",
info="There are several intermediate steps in the process such as preprocessing, OCR, chatbot interaction. You can choose to show their results here.",
)
share_result = gr.Checkbox(
True,
label="Share results",
info="Sharing your result with us will help us immensely in improving this tool.",
interactive=True,
)
contact = gr.Textbox(
type="email",
label="Contact",
interactive=True,
placeholder="Enter your email address",
info="Optionally, enter your email address to allow us to contact you regarding your result.",
visible=True,
)
share_result.change(show_share_contact, share_result, [contact])
with gr.Column(variant="panel"):
gr.HTML(
'<div><center style="color:rgb(200, 200, 200);">Output</center></div>'
)
category = gr.Dropdown(
value=None,
choices=Category.__members__.keys(),
label=f"Recognized category ({', '.join(Category.__members__.keys())})",
show_label=True,
interactive=False,
)
intermediate_outputs = gr.Accordion(
"Intermediate outputs", open=True, visible=False
)
with intermediate_outputs:
extracted_text = gr.Textbox(
label="Extracted text",
show_label=True,
max_lines=5,
show_copy_button=True,
lines=5,
interactive=False,
)
chatbot = gr.Chatbot(
None,
label="Chatbot interaction",
show_label=True,
interactive=False,
height=240,
)
information = gr.JSON(label="Extracted information")
with gr.Row():
flag_incorrect_button = gr.Button(
"Flag as incorrect", variant="stop", interactive=True
)
flag_irrelevant_button = gr.Button(
"Flag as irrelevant", variant="stop", interactive=True
)
show_intermediate.change(
show_intermediate_outputs, show_intermediate, [intermediate_outputs]
)
clear.click(clear_inputs, None, [input_file])
submit_button.click(
submit,
[input_file, extracted_text],
[extracted_text],
)
submit_button.click(
lambda input_file, category, chatbot, information: (
gr.Dropdown.update(None),
gr.Chatbot.update(None),
gr.Textbox.update(None),
) if input_file else (category, chatbot, information),
[input_file, category, chatbot, information],
[category, chatbot, information],
)
extracted_text.change(
categorize_extracted_text,
[extracted_text],
[category],
)
category.change(
extract_from_category,
[category, extracted_text],
[chatbot, information, flag_incorrect_button, flag_irrelevant_button],
)
hf_writer_normal.setup(
[input_file, extracted_text, category, chatbot, information, contact],
flagging_dir="flagged",
)
flag_method = gr.flagging.FlagMethod(
hf_writer_normal, "", "", visual_feedback=True
)
information.change(
dynamic_auto_flag(flag_method),
inputs=[
share_result,
input_file,
extracted_text,
category,
chatbot,
information,
contact,
],
outputs=None,
preprocess=False,
queue=False,
)
hf_writer_incorrect.setup(
[input_file, extracted_text, category, chatbot, information, contact],
flagging_dir="flagged_incorrect",
)
flag_incorrect_method = gr.flagging.FlagMethod(
hf_writer_incorrect,
"Flag as incorrect",
"Incorrect",
visual_feedback=True,
)
flag_incorrect_button.click(
lambda: gr.Button.update(value="Saving...", interactive=False),
None,
flag_incorrect_button,
queue=False,
)
flag_incorrect_button.click(
flag_incorrect_method,
inputs=[
input_file,
extracted_text,
category,
chatbot,
information,
contact,
],
outputs=[flag_incorrect_button],
preprocess=False,
queue=False,
)
flag_irrelevant_method = gr.flagging.FlagMethod(
hf_writer_incorrect,
"Flag as irrelevant",
"Irrelevant",
visual_feedback=True,
)
flag_irrelevant_button.click(
lambda: gr.Button.update(value="Saving...", interactive=False),
None,
flag_irrelevant_button,
queue=False,
)
flag_irrelevant_button.click(
flag_irrelevant_method,
inputs=[
input_file,
extracted_text,
category,
chatbot,
information,
contact,
],
outputs=[flag_irrelevant_button],
preprocess=False,
queue=False,
)
page.launch(show_api=True, show_error=True, debug=True)
|