Spaces:
Runtime error
Runtime error
import torch | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from torchvision import models | |
import numpy as np | |
from itertools import cycle | |
from scipy import linalg | |
try: | |
from torchvision.models.utils import load_state_dict_from_url | |
except ImportError: | |
from torch.utils.model_zoo import load_url as load_state_dict_from_url | |
# Inception weights ported to Pytorch from | |
# http://download.tensorflow.org/models/image/imagenet/inception-2015-12-05.tgz | |
FID_WEIGHTS_URL = 'https://github.com/mseitzer/pytorch-fid/releases/download/fid_weights/pt_inception-2015-12-05-6726825d.pth' | |
class InceptionV3(nn.Module): | |
"""Pretrained InceptionV3 network returning feature maps""" | |
# Index of default block of inception to return, | |
# corresponds to output of final average pooling | |
DEFAULT_BLOCK_INDEX = 3 | |
# Maps feature dimensionality to their output blocks indices | |
BLOCK_INDEX_BY_DIM = { | |
64: 0, # First max pooling features | |
192: 1, # Second max pooling featurs | |
768: 2, # Pre-aux classifier features | |
2048: 3 # Final average pooling features | |
} | |
def __init__(self, | |
output_blocks=[DEFAULT_BLOCK_INDEX], | |
resize_input=True, | |
normalize_input=True, | |
requires_grad=False, | |
use_fid_inception=True): | |
"""Build pretrained InceptionV3 | |
Parameters | |
---------- | |
output_blocks : list of int | |
Indices of blocks to return features of. Possible values are: | |
- 0: corresponds to output of first max pooling | |
- 1: corresponds to output of second max pooling | |
- 2: corresponds to output which is fed to aux classifier | |
- 3: corresponds to output of final average pooling | |
resize_input : bool | |
If true, bilinearly resizes input to width and height 299 before | |
feeding input to model. As the network without fully connected | |
layers is fully convolutional, it should be able to handle inputs | |
of arbitrary size, so resizing might not be strictly needed | |
normalize_input : bool | |
If true, scales the input from range (0, 1) to the range the | |
pretrained Inception network expects, namely (-1, 1) | |
requires_grad : bool | |
If true, parameters of the model require gradients. Possibly useful | |
for finetuning the network | |
use_fid_inception : bool | |
If true, uses the pretrained Inception model used in Tensorflow's | |
FID implementation. If false, uses the pretrained Inception model | |
available in torchvision. The FID Inception model has different | |
weights and a slightly different structure from torchvision's | |
Inception model. If you want to compute FID scores, you are | |
strongly advised to set this parameter to true to get comparable | |
results. | |
""" | |
super(InceptionV3, self).__init__() | |
self.resize_input = resize_input | |
self.normalize_input = normalize_input | |
self.output_blocks = sorted(output_blocks) | |
self.last_needed_block = max(output_blocks) | |
assert self.last_needed_block <= 3, \ | |
'Last possible output block index is 3' | |
self.blocks = nn.ModuleList() | |
if use_fid_inception: | |
inception = fid_inception_v3() | |
else: | |
inception = models.inception_v3(pretrained=True) | |
# Block 0: input to maxpool1 | |
block0 = [ | |
inception.Conv2d_1a_3x3, | |
inception.Conv2d_2a_3x3, | |
inception.Conv2d_2b_3x3, | |
nn.MaxPool2d(kernel_size=3, stride=2) | |
] | |
self.blocks.append(nn.Sequential(*block0)) | |
# Block 1: maxpool1 to maxpool2 | |
if self.last_needed_block >= 1: | |
block1 = [ | |
inception.Conv2d_3b_1x1, | |
inception.Conv2d_4a_3x3, | |
nn.MaxPool2d(kernel_size=3, stride=2) | |
] | |
self.blocks.append(nn.Sequential(*block1)) | |
# Block 2: maxpool2 to aux classifier | |
if self.last_needed_block >= 2: | |
block2 = [ | |
inception.Mixed_5b, | |
inception.Mixed_5c, | |
inception.Mixed_5d, | |
inception.Mixed_6a, | |
inception.Mixed_6b, | |
inception.Mixed_6c, | |
inception.Mixed_6d, | |
inception.Mixed_6e, | |
] | |
self.blocks.append(nn.Sequential(*block2)) | |
# Block 3: aux classifier to final avgpool | |
if self.last_needed_block >= 3: | |
block3 = [ | |
inception.Mixed_7a, | |
inception.Mixed_7b, | |
inception.Mixed_7c, | |
nn.AdaptiveAvgPool2d(output_size=(1, 1)) | |
] | |
self.blocks.append(nn.Sequential(*block3)) | |
for param in self.parameters(): | |
param.requires_grad = requires_grad | |
def forward(self, inp): | |
"""Get Inception feature maps | |
Parameters | |
---------- | |
inp : torch.autograd.Variable | |
Input tensor of shape Bx3xHxW. Values are expected to be in | |
range (0, 1) | |
Returns | |
------- | |
List of torch.autograd.Variable, corresponding to the selected output | |
block, sorted ascending by index | |
""" | |
outp = [] | |
x = inp | |
if self.resize_input: | |
x = F.interpolate(x, | |
size=(299, 299), | |
mode='bilinear', | |
align_corners=False) | |
if self.normalize_input: | |
x = 2 * x - 1 # Scale from range (0, 1) to range (-1, 1) | |
for idx, block in enumerate(self.blocks): | |
x = block(x) | |
if idx in self.output_blocks: | |
outp.append(x) | |
if idx == self.last_needed_block: | |
break | |
return outp | |
def calculate_frechet_distance(mu1, sigma1, mu2, sigma2, eps=1e-6): | |
"""Numpy implementation of the Frechet Distance. | |
The Frechet distance between two multivariate Gaussians X_1 ~ N(mu_1, C_1) | |
and X_2 ~ N(mu_2, C_2) is | |
d^2 = ||mu_1 - mu_2||^2 + Tr(C_1 + C_2 - 2*sqrt(C_1*C_2)). | |
Stable version by Dougal J. Sutherland. | |
Params: | |
-- mu1 : Numpy array containing the activations of a layer of the | |
inception net (like returned by the function 'get_predictions') | |
for generated samples. | |
-- mu2 : The sample mean over activations, precalculated on an | |
representative data set. | |
-- sigma1: The covariance matrix over activations for generated samples. | |
-- sigma2: The covariance matrix over activations, precalculated on an | |
representative data set. | |
Returns: | |
-- : The Frechet Distance. | |
""" | |
mu1 = np.atleast_1d(mu1) | |
mu2 = np.atleast_1d(mu2) | |
sigma1 = np.atleast_2d(sigma1) | |
sigma2 = np.atleast_2d(sigma2) | |
assert mu1.shape == mu2.shape, \ | |
'Training and test mean vectors have different lengths' | |
assert sigma1.shape == sigma2.shape, \ | |
'Training and test covariances have different dimensions' | |
diff = mu1 - mu2 | |
# Product might be almost singular | |
covmean, _ = linalg.sqrtm(sigma1.dot(sigma2), disp=False) | |
if not np.isfinite(covmean).all(): | |
msg = ('fid calculation produces singular product; ' | |
'adding %s to diagonal of cov estimates') % eps | |
print(msg) | |
offset = np.eye(sigma1.shape[0]) * eps | |
covmean = linalg.sqrtm((sigma1 + offset).dot(sigma2 + offset)) | |
# Numerical error might give slight imaginary component | |
if np.iscomplexobj(covmean): | |
if not np.allclose(np.diagonal(covmean).imag, 0, atol=1e-3): | |
m = np.max(np.abs(covmean.imag)) | |
raise ValueError('Imaginary component {}'.format(m)) | |
covmean = covmean.real | |
tr_covmean = np.trace(covmean) | |
return (diff.dot(diff) + np.trace(sigma1) + | |
np.trace(sigma2) - 2 * tr_covmean) | |
def fid_inception_v3(): | |
"""Build pretrained Inception model for FID computation | |
The Inception model for FID computation uses a different set of weights | |
and has a slightly different structure than torchvision's Inception. | |
This method first constructs torchvision's Inception and then patches the | |
necessary parts that are different in the FID Inception model. | |
""" | |
inception = models.inception_v3(num_classes=1008, | |
aux_logits=False, | |
pretrained=False) | |
inception.Mixed_5b = FIDInceptionA(192, pool_features=32) | |
inception.Mixed_5c = FIDInceptionA(256, pool_features=64) | |
inception.Mixed_5d = FIDInceptionA(288, pool_features=64) | |
inception.Mixed_6b = FIDInceptionC(768, channels_7x7=128) | |
inception.Mixed_6c = FIDInceptionC(768, channels_7x7=160) | |
inception.Mixed_6d = FIDInceptionC(768, channels_7x7=160) | |
inception.Mixed_6e = FIDInceptionC(768, channels_7x7=192) | |
inception.Mixed_7b = FIDInceptionE_1(1280) | |
inception.Mixed_7c = FIDInceptionE_2(2048) | |
state_dict = load_state_dict_from_url(FID_WEIGHTS_URL, progress=True) | |
inception.load_state_dict(state_dict) | |
return inception | |
class FIDInceptionA(models.inception.InceptionA): | |
"""InceptionA block patched for FID computation""" | |
def __init__(self, in_channels, pool_features): | |
super(FIDInceptionA, self).__init__(in_channels, pool_features) | |
def forward(self, x): | |
branch1x1 = self.branch1x1(x) | |
branch5x5 = self.branch5x5_1(x) | |
branch5x5 = self.branch5x5_2(branch5x5) | |
branch3x3dbl = self.branch3x3dbl_1(x) | |
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
branch3x3dbl = self.branch3x3dbl_3(branch3x3dbl) | |
# Patch: Tensorflow's average pool does not use the padded zero's in | |
# its average calculation | |
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, | |
count_include_pad=False) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch5x5, branch3x3dbl, branch_pool] | |
return torch.cat(outputs, 1) | |
class FIDInceptionC(models.inception.InceptionC): | |
"""InceptionC block patched for FID computation""" | |
def __init__(self, in_channels, channels_7x7): | |
super(FIDInceptionC, self).__init__(in_channels, channels_7x7) | |
def forward(self, x): | |
branch1x1 = self.branch1x1(x) | |
branch7x7 = self.branch7x7_1(x) | |
branch7x7 = self.branch7x7_2(branch7x7) | |
branch7x7 = self.branch7x7_3(branch7x7) | |
branch7x7dbl = self.branch7x7dbl_1(x) | |
branch7x7dbl = self.branch7x7dbl_2(branch7x7dbl) | |
branch7x7dbl = self.branch7x7dbl_3(branch7x7dbl) | |
branch7x7dbl = self.branch7x7dbl_4(branch7x7dbl) | |
branch7x7dbl = self.branch7x7dbl_5(branch7x7dbl) | |
# Patch: Tensorflow's average pool does not use the padded zero's in | |
# its average calculation | |
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, | |
count_include_pad=False) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch7x7, branch7x7dbl, branch_pool] | |
return torch.cat(outputs, 1) | |
class FIDInceptionE_1(models.inception.InceptionE): | |
"""First InceptionE block patched for FID computation""" | |
def __init__(self, in_channels): | |
super(FIDInceptionE_1, self).__init__(in_channels) | |
def forward(self, x): | |
branch1x1 = self.branch1x1(x) | |
branch3x3 = self.branch3x3_1(x) | |
branch3x3 = [ | |
self.branch3x3_2a(branch3x3), | |
self.branch3x3_2b(branch3x3), | |
] | |
branch3x3 = torch.cat(branch3x3, 1) | |
branch3x3dbl = self.branch3x3dbl_1(x) | |
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
branch3x3dbl = [ | |
self.branch3x3dbl_3a(branch3x3dbl), | |
self.branch3x3dbl_3b(branch3x3dbl), | |
] | |
branch3x3dbl = torch.cat(branch3x3dbl, 1) | |
# Patch: Tensorflow's average pool does not use the padded zero's in | |
# its average calculation | |
branch_pool = F.avg_pool2d(x, kernel_size=3, stride=1, padding=1, | |
count_include_pad=False) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | |
return torch.cat(outputs, 1) | |
class FIDInceptionE_2(models.inception.InceptionE): | |
"""Second InceptionE block patched for FID computation""" | |
def __init__(self, in_channels): | |
super(FIDInceptionE_2, self).__init__(in_channels) | |
def forward(self, x): | |
branch1x1 = self.branch1x1(x) | |
branch3x3 = self.branch3x3_1(x) | |
branch3x3 = [ | |
self.branch3x3_2a(branch3x3), | |
self.branch3x3_2b(branch3x3), | |
] | |
branch3x3 = torch.cat(branch3x3, 1) | |
branch3x3dbl = self.branch3x3dbl_1(x) | |
branch3x3dbl = self.branch3x3dbl_2(branch3x3dbl) | |
branch3x3dbl = [ | |
self.branch3x3dbl_3a(branch3x3dbl), | |
self.branch3x3dbl_3b(branch3x3dbl), | |
] | |
branch3x3dbl = torch.cat(branch3x3dbl, 1) | |
# Patch: The FID Inception model uses max pooling instead of average | |
# pooling. This is likely an error in this specific Inception | |
# implementation, as other Inception models use average pooling here | |
# (which matches the description in the paper). | |
branch_pool = F.max_pool2d(x, kernel_size=3, stride=1, padding=1) | |
branch_pool = self.branch_pool(branch_pool) | |
outputs = [branch1x1, branch3x3, branch3x3dbl, branch_pool] | |
return torch.cat(outputs, 1) |