HWT / models /BigGAN_networks.py
ankankbhunia's picture
INIT
13580fb verified
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT
import numpy as np
import math
import functools
import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter as P
from .transformer import Transformer
from . import BigGAN_layers as layers
from .sync_batchnorm import SynchronizedBatchNorm2d as SyncBatchNorm2d
from util.util import to_device, load_network
from .networks import init_weights
from params import *
# Attention is passed in in the format '32_64' to mean applying an attention
# block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64.
from models.blocks import LinearBlock, Conv2dBlock, ResBlocks, ActFirstResBlock
class Decoder(nn.Module):
def __init__(self, ups=3, n_res=2, dim=512, out_dim=1, res_norm='adain', activ='relu', pad_type='reflect'):
super(Decoder, self).__init__()
self.model = []
self.model += [ResBlocks(n_res, dim, res_norm,
activ, pad_type=pad_type)]
for i in range(ups):
self.model += [nn.Upsample(scale_factor=2),
Conv2dBlock(dim, dim // 2, 5, 1, 2,
norm='in',
activation=activ,
pad_type=pad_type)]
dim //= 2
self.model += [Conv2dBlock(dim, out_dim, 7, 1, 3,
norm='none',
activation='tanh',
pad_type=pad_type)]
self.model = nn.Sequential(*self.model)
def forward(self, x):
y = self.model(x)
return y
def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'):
arch = {}
arch[512] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2, 1]],
'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1, 1]],
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32, 64, 128, 256, 512],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 10)}}
arch[256] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2]],
'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1]],
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32, 64, 128, 256],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 9)}}
arch[128] = {'in_channels': [ch * item for item in [16, 16, 8, 4, 2]],
'out_channels': [ch * item for item in [16, 8, 4, 2, 1]],
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32, 64, 128],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 8)}}
arch[64] = {'in_channels': [ch * item for item in [16, 16, 8, 4]],
'out_channels': [ch * item for item in [16, 8, 4, 2]],
'upsample': [(2, 2), (2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32, 64],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 7)}}
arch[63] = {'in_channels': [ch * item for item in [16, 16, 8, 4]],
'out_channels': [ch * item for item in [16, 8, 4, 2]],
'upsample': [(2, 2), (2, 2), (2, 2), (2,1)],
'resolution': [8, 16, 32, 64],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 7)},
'kernel1': [3, 3, 3, 3],
'kernel2': [3, 3, 1, 1]
}
arch[32] = {'in_channels': [ch * item for item in [4, 4, 4]],
'out_channels': [ch * item for item in [4, 4, 4]],
'upsample': [(2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)}}
arch[32] = {'in_channels': [ch * item for item in [4, 4, 4]],
'out_channels': [ch * item for item in [4, 4, 4]],
'upsample': [(2, 2), (2, 2), (2, 2)],
'resolution': [8, 16, 32],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)},
'kernel1': [3, 3, 3],
'kernel2': [3, 3, 1]
}
arch[129] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2, 1]],
'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1, 1]],
'upsample': [(2,2), (2,2), (2,2), (2,2), (2,2), (1,2), (1,2)],
'resolution': [8, 16, 32, 64, 128, 256, 512],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 10)}}
arch[33] = {'in_channels': [ch * item for item in [16, 16, 8, 4, 2]],
'out_channels': [ch * item for item in [16, 8, 4, 2, 1]],
'upsample': [(2,2), (2,2), (2,2), (1,2), (1,2)],
'resolution': [8, 16, 32, 64, 128],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 8)}}
arch[31] = {'in_channels': [ch * item for item in [16, 16, 4, 2]],
'out_channels': [ch * item for item in [16, 4, 2, 1]],
'upsample': [(2,2), (2,2), (2,2), (1,2)],
'resolution': [8, 16, 32, 64],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 7)},
'kernel1':[3, 3, 3, 3],
'kernel2': [3, 1, 1, 1]}
arch[16] = {'in_channels': [ch * item for item in [8, 4, 2]],
'out_channels': [ch * item for item in [4, 2, 1]],
'upsample': [(2,2), (2,2), (2,1)],
'resolution': [8, 16, 16],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)},
'kernel1':[3, 3, 3],
'kernel2': [3, 3, 1]}
arch[17] = {'in_channels': [ch * item for item in [8, 4, 2]],
'out_channels': [ch * item for item in [4, 2, 1]],
'upsample': [(2,2), (2,2), (2,1)],
'resolution': [8, 16, 16],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)},
'kernel1':[3, 3, 3],
'kernel2': [3, 3, 1]}
arch[20] = {'in_channels': [ch * item for item in [8, 4, 2]],
'out_channels': [ch * item for item in [4, 2, 1]],
'upsample': [(2,2), (2,2), (2,1)],
'resolution': [8, 16, 16],
'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
for i in range(3, 6)},
'kernel1':[3, 3, 3],
'kernel2': [3, 1, 1]}
return arch
class Generator(nn.Module):
def __init__(self, G_ch=64, dim_z=128, bottom_width=4, bottom_height=4,resolution=128,
G_kernel_size=3, G_attn='64', n_classes=1000,
num_G_SVs=1, num_G_SV_itrs=1,
G_shared=True, shared_dim=0, no_hier=False,
cross_replica=False, mybn=False,
G_activation=nn.ReLU(inplace=False),
BN_eps=1e-5, SN_eps=1e-12, G_fp16=False,
G_init='ortho', skip_init=False,
G_param='SN', norm_style='bn',gpu_ids=[], bn_linear='embed', input_nc=3,
one_hot=False, first_layer=False, one_hot_k=1,
**kwargs):
super(Generator, self).__init__()
self.name = 'G'
# Use class only in first layer
self.first_layer = first_layer
# gpu-ids
self.gpu_ids = gpu_ids
# Use one hot vector representation for input class
self.one_hot = one_hot
# Use one hot k vector representation for input class if k is larger than 0. If it's 0, simly use the class number and not a k-hot encoding.
self.one_hot_k = one_hot_k
# Channel width mulitplier
self.ch = G_ch
# Dimensionality of the latent space
self.dim_z = dim_z
# The initial width dimensions
self.bottom_width = bottom_width
# The initial height dimension
self.bottom_height = bottom_height
# Resolution of the output
self.resolution = resolution
# Kernel size?
self.kernel_size = G_kernel_size
# Attention?
self.attention = G_attn
# number of classes, for use in categorical conditional generation
self.n_classes = n_classes
# Use shared embeddings?
self.G_shared = G_shared
# Dimensionality of the shared embedding? Unused if not using G_shared
self.shared_dim = shared_dim if shared_dim > 0 else dim_z
# Hierarchical latent space?
self.hier = not no_hier
# Cross replica batchnorm?
self.cross_replica = cross_replica
# Use my batchnorm?
self.mybn = mybn
# nonlinearity for residual blocks
self.activation = G_activation
# Initialization style
self.init = G_init
# Parameterization style
self.G_param = G_param
# Normalization style
self.norm_style = norm_style
# Epsilon for BatchNorm?
self.BN_eps = BN_eps
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# fp16?
self.fp16 = G_fp16
# Architecture dict
self.arch = G_arch(self.ch, self.attention)[resolution]
self.bn_linear = bn_linear
#self.transformer = Transformer(d_model = 2560)
#self.input_proj = nn.Conv2d(512, 2560, kernel_size=1)
self.linear_q = nn.Linear(512,2048*2)
self.DETR = build()
self.DEC = Decoder(res_norm = 'in')
# If using hierarchical latents, adjust z
if self.hier:
# Number of places z slots into
self.num_slots = len(self.arch['in_channels']) + 1
self.z_chunk_size = (self.dim_z // self.num_slots)
# Recalculate latent dimensionality for even splitting into chunks
self.dim_z = self.z_chunk_size * self.num_slots
else:
self.num_slots = 1
self.z_chunk_size = 0
# Which convs, batchnorms, and linear layers to use
if self.G_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
else:
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
self.which_linear = nn.Linear
# We use a non-spectral-normed embedding here regardless;
# For some reason applying SN to G's embedding seems to randomly cripple G
if one_hot:
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
else:
self.which_embedding = nn.Embedding
bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared
else self.which_embedding)
if self.bn_linear=='SN':
bn_linear = functools.partial(self.which_linear, bias=False)
if self.G_shared:
input_size = self.shared_dim + self.z_chunk_size
elif self.hier:
if self.first_layer:
input_size = self.z_chunk_size
else:
input_size = self.n_classes + self.z_chunk_size
self.which_bn = functools.partial(layers.ccbn,
which_linear=bn_linear,
cross_replica=self.cross_replica,
mybn=self.mybn,
input_size=input_size,
norm_style=self.norm_style,
eps=self.BN_eps)
else:
input_size = self.n_classes
self.which_bn = functools.partial(layers.bn,
cross_replica=self.cross_replica,
mybn=self.mybn,
eps=self.BN_eps)
# Prepare model
# If not using shared embeddings, self.shared is just a passthrough
self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared
else layers.identity())
# First linear layer
# The parameters for the first linear layer depend on the different input variations.
if self.first_layer:
if self.one_hot:
self.linear = self.which_linear(self.dim_z // self.num_slots + self.n_classes,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
else:
self.linear = self.which_linear(self.dim_z // self.num_slots + 1,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
if self.one_hot_k==1:
self.linear = self.which_linear((self.dim_z // self.num_slots) * self.n_classes,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
if self.one_hot_k>1:
self.linear = self.which_linear(self.dim_z // self.num_slots + self.n_classes*self.one_hot_k,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
else:
self.linear = self.which_linear(self.dim_z // self.num_slots,
self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
# while the inner loop is over a given block
self.blocks = []
for index in range(len(self.arch['out_channels'])):
if 'kernel1' in self.arch.keys():
padd1 = 1 if self.arch['kernel1'][index]>1 else 0
padd2 = 1 if self.arch['kernel2'][index]>1 else 0
conv1 = functools.partial(layers.SNConv2d,
kernel_size=self.arch['kernel1'][index], padding=padd1,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
conv2 = functools.partial(layers.SNConv2d,
kernel_size=self.arch['kernel2'][index], padding=padd2,
num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
eps=self.SN_eps)
self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv1=conv1,
which_conv2=conv2,
which_bn=self.which_bn,
activation=self.activation,
upsample=(functools.partial(F.interpolate,
scale_factor=self.arch['upsample'][index])
if index < len(self.arch['upsample']) else None))]]
else:
self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv1=self.which_conv,
which_conv2=self.which_conv,
which_bn=self.which_bn,
activation=self.activation,
upsample=(functools.partial(F.interpolate, scale_factor=self.arch['upsample'][index])
if index < len(self.arch['upsample']) else None))]]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# output layer: batchnorm-relu-conv.
# Consider using a non-spectral conv here
self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1],
cross_replica=self.cross_replica,
mybn=self.mybn),
self.activation,
self.which_conv(self.arch['out_channels'][-1], input_nc))
# Initialize weights. Optionally skip init for testing.
if not skip_init:
self = init_weights(self, G_init)
# Note on this forward function: we pass in a y vector which has
# already been passed through G.shared to enable easy class-wise
# interpolation later. If we passed in the one-hot and then ran it through
# G.shared in this forward function, it would be harder to handle.
def forward(self, x, y_ind, y):
# If hierarchical, concatenate zs and ys
h_all = self.DETR(x, y_ind)
#h_all = torch.stack([h_all, h_all, h_all])
#h_all_bs = torch.unbind(h_all[-1], 0)
#y_bs = torch.unbind(y_ind, 0)
#h = torch.stack([h_i[y_j] for h_i,y_j in zip(h_all_bs, y_bs)], 0)
h = self.linear_q(h_all)
h = h.contiguous()
# Reshape - when y is not a single class value but rather an array of classes, the reshape is needed to create
# a separate vertical patch for each input.
if self.first_layer:
# correct reshape
h = h.view(h.size(0), h.shape[1]*2, 4, -1)
h = h.permute(0, 3, 2, 1)
else:
h = h.view(h.size(0), -1, self.bottom_width, self.bottom_height)
#for index, blocklist in enumerate(self.blocks):
# Second inner loop in case block has multiple layers
# for block in blocklist:
# h = block(h, ys[index])
#Apply batchnorm-relu-conv-tanh at output
# h = torch.tanh(self.output_layer(h))
h = self.DEC(h)
return h
# Discriminator architecture, same paradigm as G's above
def D_arch(ch=64, attention='64', input_nc=3, ksize='333333', dilation='111111'):
arch = {}
arch[256] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
'downsample': [True] * 6 + [False],
'resolution': [128, 64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 8)}}
arch[128] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
'downsample': [True] * 5 + [False],
'resolution': [64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 8)}}
arch[64] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16]],
'downsample': [True] * 4 + [False],
'resolution': [32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 7)}}
arch[63] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16]],
'downsample': [True] * 4 + [False],
'resolution': [32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 7)}}
arch[32] = {'in_channels': [input_nc] + [item * ch for item in [4, 4, 4]],
'out_channels': [item * ch for item in [4, 4, 4, 4]],
'downsample': [True, True, False, False],
'resolution': [16, 16, 16, 16],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 6)}}
arch[129] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
'downsample': [True] * 6 + [False],
'resolution': [128, 64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 8)}}
arch[33] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
'downsample': [True] * 5 + [False],
'resolution': [64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 10)}}
arch[31] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
'downsample': [True] * 5 + [False],
'resolution': [64, 32, 16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 10)}}
arch[16] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]],
'out_channels': [item * ch for item in [1, 8, 16, 16]],
'downsample': [True] * 3 + [False],
'resolution': [16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 5)}}
arch[17] = {'in_channels': [input_nc] + [ch * item for item in [1, 4]],
'out_channels': [item * ch for item in [1, 4, 8]],
'downsample': [True] * 3,
'resolution': [16, 8, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 5)}}
arch[20] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]],
'out_channels': [item * ch for item in [1, 8, 16, 16]],
'downsample': [True] * 3 + [False],
'resolution': [16, 8, 4, 4],
'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
for i in range(2, 5)}}
return arch
class Discriminator(nn.Module):
def __init__(self, D_ch=64, D_wide=True, resolution=resolution,
D_kernel_size=3, D_attn='64', n_classes=VOCAB_SIZE,
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
SN_eps=1e-8, output_dim=1, D_mixed_precision=False, D_fp16=False,
D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False, **kwargs):
super(Discriminator, self).__init__()
self.name = 'D'
# gpu_ids
self.gpu_ids = gpu_ids
# one_hot representation
self.one_hot = one_hot
# Width multiplier
self.ch = D_ch
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
self.D_wide = D_wide
# Resolution
self.resolution = resolution
# Kernel size
self.kernel_size = D_kernel_size
# Attention?
self.attention = D_attn
# Number of classes
self.n_classes = n_classes
# Activation
self.activation = D_activation
# Initialization style
self.init = D_init
# Parameterization style
self.D_param = D_param
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# Fp16?
self.fp16 = D_fp16
# Architecture
self.arch = D_arch(self.ch, self.attention, input_nc)[resolution]
# Which convs, batchnorms, and linear layers to use
# No option to turn off SN in D right now
if self.D_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_embedding = functools.partial(layers.SNEmbedding,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
if bn_linear=='SN':
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
else:
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
self.which_linear = nn.Linear
# We use a non-spectral-normed embedding here regardless;
# For some reason applying SN to G's embedding seems to randomly cripple G
self.which_embedding = nn.Embedding
if one_hot:
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
# Prepare model
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
self.blocks = []
for index in range(len(self.arch['out_channels'])):
self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv=self.which_conv,
wide=self.D_wide,
activation=self.activation,
preactivation=(index > 0),
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# Linear output layer. The output dimension is typically 1, but may be
# larger if we're e.g. turning this into a VAE with an inference output
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
# Embedding for projection discrimination
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
# Initialize weights
if not skip_init:
self = init_weights(self, D_init)
def forward(self, x, y=None, **kwargs):
# Stick x into h for cleaner for loops without flow control
h = x
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
# Apply global sum pooling as in SN-GAN
h = torch.sum(self.activation(h), [2, 3])
# Get initial class-unconditional output
out = self.linear(h)
# Get projection of final featureset onto class vectors and add to evidence
if y is not None:
out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)
return out
def return_features(self, x, y=None):
# Stick x into h for cleaner for loops without flow control
h = x
block_output = []
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
block_output.append(h)
# Apply global sum pooling as in SN-GAN
# h = torch.sum(self.activation(h), [2, 3])
return block_output
class WDiscriminator(nn.Module):
def __init__(self, D_ch=64, D_wide=True, resolution=resolution,
D_kernel_size=3, D_attn='64', n_classes=VOCAB_SIZE,
num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
SN_eps=1e-8, output_dim=NUM_WRITERS, D_mixed_precision=False, D_fp16=False,
D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False, **kwargs):
super(WDiscriminator, self).__init__()
self.name = 'D'
# gpu_ids
self.gpu_ids = gpu_ids
# one_hot representation
self.one_hot = one_hot
# Width multiplier
self.ch = D_ch
# Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
self.D_wide = D_wide
# Resolution
self.resolution = resolution
# Kernel size
self.kernel_size = D_kernel_size
# Attention?
self.attention = D_attn
# Number of classes
self.n_classes = n_classes
# Activation
self.activation = D_activation
# Initialization style
self.init = D_init
# Parameterization style
self.D_param = D_param
# Epsilon for Spectral Norm?
self.SN_eps = SN_eps
# Fp16?
self.fp16 = D_fp16
# Architecture
self.arch = D_arch(self.ch, self.attention, input_nc)[resolution]
# Which convs, batchnorms, and linear layers to use
# No option to turn off SN in D right now
if self.D_param == 'SN':
self.which_conv = functools.partial(layers.SNConv2d,
kernel_size=3, padding=1,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_linear = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
self.which_embedding = functools.partial(layers.SNEmbedding,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
if bn_linear=='SN':
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
else:
self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
self.which_linear = nn.Linear
# We use a non-spectral-normed embedding here regardless;
# For some reason applying SN to G's embedding seems to randomly cripple G
self.which_embedding = nn.Embedding
if one_hot:
self.which_embedding = functools.partial(layers.SNLinear,
num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
eps=self.SN_eps)
# Prepare model
# self.blocks is a doubly-nested list of modules, the outer loop intended
# to be over blocks at a given resolution (resblocks and/or self-attention)
self.blocks = []
for index in range(len(self.arch['out_channels'])):
self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
out_channels=self.arch['out_channels'][index],
which_conv=self.which_conv,
wide=self.D_wide,
activation=self.activation,
preactivation=(index > 0),
downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
# If attention on this block, attach it to the end
if self.arch['attention'][self.arch['resolution'][index]]:
print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
self.which_conv)]
# Turn self.blocks into a ModuleList so that it's all properly registered.
self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
# Linear output layer. The output dimension is typically 1, but may be
# larger if we're e.g. turning this into a VAE with an inference output
self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
# Embedding for projection discrimination
self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
self.cross_entropy = nn.CrossEntropyLoss()
# Initialize weights
if not skip_init:
self = init_weights(self, D_init)
def forward(self, x, y=None, **kwargs):
# Stick x into h for cleaner for loops without flow control
h = x
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
# Apply global sum pooling as in SN-GAN
h = torch.sum(self.activation(h), [2, 3])
# Get initial class-unconditional output
out = self.linear(h)
# Get projection of final featureset onto class vectors and add to evidence
#if y is not None:
#out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)
loss = self.cross_entropy(out, y.long())
return loss
def return_features(self, x, y=None):
# Stick x into h for cleaner for loops without flow control
h = x
block_output = []
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
block_output.append(h)
# Apply global sum pooling as in SN-GAN
# h = torch.sum(self.activation(h), [2, 3])
return block_output
class Encoder(Discriminator):
def __init__(self, opt, output_dim, **kwargs):
super(Encoder, self).__init__(**vars(opt))
self.output_layer = nn.Sequential(self.activation,
nn.Conv2d(self.arch['out_channels'][-1], output_dim, kernel_size=(4,2), padding=0, stride=2))
def forward(self, x):
# Stick x into h for cleaner for loops without flow control
h = x
# Loop over blocks
for index, blocklist in enumerate(self.blocks):
for block in blocklist:
h = block(h)
out = self.output_layer(h)
return out
class BiDiscriminator(nn.Module):
def __init__(self, opt):
super(BiDiscriminator, self).__init__()
self.infer_img = Encoder(opt, output_dim=opt.nimg_features)
# self.infer_z = nn.Sequential(
# nn.Conv2d(opt.dim_z, 512, 1, stride=1, bias=False),
# nn.LeakyReLU(inplace=True),
# nn.Dropout2d(p=self.dropout),
# nn.Conv2d(512, opt.nz_features, 1, stride=1, bias=False),
# nn.LeakyReLU(inplace=True),
# nn.Dropout2d(p=self.dropout)
# )
self.infer_joint = nn.Sequential(
nn.Conv2d(opt.dim_z+opt.nimg_features, 1024, 1, stride=1, bias=True),
nn.ReLU(inplace=True),
nn.Conv2d(1024, 1024, 1, stride=1, bias=True),
nn.ReLU(inplace=True)
)
self.final = nn.Conv2d(1024, 1, 1, stride=1, bias=True)
def forward(self, x, z, **kwargs):
output_x = self.infer_img(x)
# output_z = self.infer_z(z)
if len(z.shape)==2:
z = z.unsqueeze(2).unsqueeze(2).repeat((1,1,1,output_x.shape[3]))
output_features = self.infer_joint(torch.cat([output_x, z], dim=1))
output = self.final(output_features)
return output
# Parallelized G_D to minimize cross-gpu communication
# Without this, Generator outputs would get all-gathered and then rebroadcast.
class G_D(nn.Module):
def __init__(self, G, D):
super(G_D, self).__init__()
self.G = G
self.D = D
def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False,
split_D=False):
# If training G, enable grad tape
with torch.set_grad_enabled(train_G):
# Get Generator output given noise
G_z = self.G(z, self.G.shared(gy))
# Cast as necessary
if self.G.fp16 and not self.D.fp16:
G_z = G_z.float()
if self.D.fp16 and not self.G.fp16:
G_z = G_z.half()
# Split_D means to run D once with real data and once with fake,
# rather than concatenating along the batch dimension.
if split_D:
D_fake = self.D(G_z, gy)
if x is not None:
D_real = self.D(x, dy)
return D_fake, D_real
else:
if return_G_z:
return D_fake, G_z
else:
return D_fake
# If real data is provided, concatenate it with the Generator's output
# along the batch dimension for improved efficiency.
else:
D_input = torch.cat([G_z, x], 0) if x is not None else G_z
D_class = torch.cat([gy, dy], 0) if dy is not None else gy
# Get Discriminator output
D_out = self.D(D_input, D_class)
if x is not None:
return torch.split(D_out, [G_z.shape[0], x.shape[0]]) # D_fake, D_real
else:
if return_G_z:
return D_out, G_z
else:
return D_out