HWT / data /prepare_data.py
ankankbhunia's picture
INIT
13580fb verified
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT
import os
import lmdb, tqdm
import cv2
import numpy as np
import argparse
import shutil
import sys
from PIL import Image
import random
import io
import xmltodict
import html
from sklearn.decomposition import PCA
import math
from tqdm import tqdm
from itertools import compress
import glob
def checkImageIsValid(imageBin):
if imageBin is None:
return False
imageBuf = np.fromstring(imageBin, dtype=np.uint8)
img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
imgH, imgW = img.shape[0], img.shape[1]
if imgH * imgW == 0:
return False
return True
def writeCache(env, cache):
with env.begin(write=True) as txn:
for k, v in cache.items():
if type(k) == str:
k = k.encode()
if type(v) == str:
v = v.encode()
txn.put(k, v)
def find_rot_angle(idx_letters):
idx_letters = np.array(idx_letters).transpose()
pca = PCA(n_components=2)
pca.fit(idx_letters)
comp = pca.components_
angle = math.atan(comp[0][0]/comp[0][1])
return math.degrees(angle)
def read_data_from_folder(folder_path):
image_path_list = []
label_list = []
pics = os.listdir(folder_path)
pics.sort(key=lambda i: len(i))
for pic in pics:
image_path_list.append(folder_path + '/' + pic)
label_list.append(pic.split('_')[0])
return image_path_list, label_list
def read_data_from_file(file_path):
image_path_list = []
label_list = []
f = open(file_path)
while True:
line1 = f.readline()
line2 = f.readline()
if not line1 or not line2:
break
line1 = line1.replace('\r', '').replace('\n', '')
line2 = line2.replace('\r', '').replace('\n', '')
image_path_list.append(line1)
label_list.append(line2)
return image_path_list, label_list
def show_demo(demo_number, image_path_list, label_list):
print('\nShow some demo to prevent creating wrong lmdb data')
print('The first line is the path to image and the second line is the image label')
for i in range(demo_number):
print('image: %s\nlabel: %s\n' % (image_path_list[i], label_list[i]))
def create_img_label_list(top_dir,dataset, mode, words, author_number, remove_punc):
root_dir = os.path.join(top_dir, dataset)
output_dir = root_dir + (dataset=='IAM')*('/words'*words + '/lines'*(not words))
image_path_list, label_list = [], []
author_id = 'None'
mode = 'all'
if dataset=='CVL':
root_dir = os.path.join(root_dir, 'cvl-database-1-1')
if words:
images_name = 'words'
else:
images_name = 'lines'
if mode == 'tr' or mode == 'val':
mode_dir = ['trainset']
elif mode == 'te':
mode_dir = ['testset']
elif mode == 'all':
mode_dir = ['testset', 'trainset']
idx = 1
for mod in mode_dir:
images_dir = os.path.join(root_dir, mod, images_name)
for path, subdirs, files in os.walk(images_dir):
for name in files:
if (mode == 'tr' and idx >= 10000) or (
mode == 'val' and idx < 10000) or mode == 'te' or mode == 'all' or mode == 'tr_3te':
if os.path.splitext(name)[0].split('-')[1] == '6':
continue
label = os.path.splitext(name)[0].split('-')[-1]
imagePath = os.path.join(path, name)
label_list.append(label)
image_path_list.append(imagePath)
idx += 1
elif dataset=='IAM':
labels_name = 'original'
if mode=='all':
mode = ['te', 'va1', 'va2', 'tr']
elif mode=='valtest':
mode=['te', 'va1', 'va2']
else:
mode = [mode]
if words:
images_name = 'wordImages'
else:
images_name = 'lineImages'
images_dir = os.path.join(root_dir, images_name)
labels_dir = os.path.join(root_dir, labels_name)
full_ann_files = []
im_dirs = []
line_ann_dirs = []
image_path_list, label_list = [], []
for mod in mode:
part_file = os.path.join(root_dir, 'original_partition', mod + '.lst')
with open(part_file)as fp:
for line in fp:
name = line.split('-')
if int(name[-1][:-1]) == 0:
anno_file = os.path.join(labels_dir, '-'.join(name[:2]) + '.xml')
full_ann_files.append(anno_file)
im_dir = os.path.join(images_dir, name[0], '-'.join(name[:2]))
im_dirs.append(im_dir)
if author_number >= 0:
full_ann_files = [full_ann_files[author_number]]
im_dirs = [im_dirs[author_number]]
author_id = im_dirs[0].split('/')[-1]
lables_to_skip = ['.', '', ',', '"', "'", '(', ')', ':', ';', '!']
for i, anno_file in enumerate(full_ann_files):
with open(anno_file) as f:
try:
line = f.read()
annotation_content = xmltodict.parse(line)
lines = annotation_content['form']['handwritten-part']['line']
if words:
lines_list = []
for j in range(len(lines)):
lines_list.extend(lines[j]['word'])
lines = lines_list
except:
print('line is not decodable')
for line in lines:
try:
label = html.unescape(line['@text'])
except:
continue
if remove_punc and label in lables_to_skip:
continue
id = line['@id']
imagePath = os.path.join(im_dirs[i], id + '.png')
image_path_list.append(imagePath)
label_list.append(label)
elif dataset=='RIMES':
if mode=='tr':
images_dir = os.path.join(root_dir, 'orig','training_WR')
gt_file = os.path.join(root_dir, 'orig',
'groundtruth_training_icdar2011.txt')
elif mode=='te':
images_dir = os.path.join(root_dir, 'orig', 'testdataset_ICDAR')
gt_file = os.path.join(root_dir, 'orig',
'ground_truth_test_icdar2011.txt')
elif mode=='val':
images_dir = os.path.join(root_dir, 'orig', 'valdataset_ICDAR')
gt_file = os.path.join(root_dir, 'orig',
'ground_truth_validation_icdar2011.txt')
with open(gt_file, 'r') as f:
lines = f.readlines()
image_path_list = [os.path.join(images_dir, line.split(' ')[0]) for line in lines if len(line.split(' ')) > 1]
label_list = [line.split(' ')[1][:-1] for line in lines if len(line.split(' ')) > 1]
return image_path_list, label_list, output_dir, author_id
def createDataset(IMG_DATA, image_path_list, label_list, outputPath, mode, author_id, remove_punc, resize, imgH, init_gap, h_gap, charminW, charmaxW, discard_wide, discard_narr, labeled):
assert (len(image_path_list) == len(label_list))
nSamples = len(image_path_list)
outputPath = outputPath + (resize=='charResize') * ('/h%schar%sto%s/'%(imgH, charminW, charmaxW)) + (resize=='keepRatio') * ('/h%s/'%(imgH)) \
+ (resize=='noResize') * ('/noResize/') + (author_id!='None') * ('single_authors/'+author_id+'/' ) \
+ mode + (resize!='noResize') * (('_initGap%s'%(init_gap)) * (init_gap>0) + ('_hGap%s'%(h_gap)) * (h_gap>0) \
+ '_NoDiscard_wide' * (not discard_wide) + '_NoDiscard_wide' * (not discard_narr))+'_unlabeld' * (not labeled) +\
(('IAM' in outputPath) and remove_punc) *'_removePunc'
outputPath_ = '/root/Handwritten_data/IAM/authors' + (resize=='charResize') * ('/h%schar%sto%s/'%(imgH, charminW, charmaxW)) + (resize=='keepRatio') * ('/h%s/'%(imgH)) \
+ (resize=='noResize') * ('/noResize/') + (author_id!='None') * ('single_authors/'+author_id+'/' ) \
+ mode + (resize!='noResize') * (('_initGap%s'%(init_gap)) * (init_gap>0) + ('_hGap%s'%(h_gap)) * (h_gap>0) \
+ '_NoDiscard_wide' * (not discard_wide) + '_NoDiscard_wide' * (not discard_narr))+'_unlabeld' * (not labeled) +\
(('IAM' in outputPath) and remove_punc) *'_removePunc'
print(outputPath)
if os.path.exists(outputPath):
shutil.rmtree(outputPath)
os.makedirs(outputPath)
else:
os.makedirs(outputPath)
env = lmdb.open(outputPath, map_size=1099511627776)
cache = {}
cnt = 1
discard_wide = False
for i in tqdm(range(nSamples)):
imagePath = image_path_list[i]
#author_id = image_path_list[i].split('/')[-2]
label = label_list[i]
if not os.path.exists(imagePath):
print('%s does not exist' % imagePath)
continue
try:
im = Image.open(imagePath)
except:
continue
if resize in ['charResize', 'keepRatio']:
width, height = im.size
new_height = imgH - (h_gap * 2)
len_word = len(label)
width = int(width * imgH / height)
new_width = width
if resize=='charResize':
if (width/len_word > (charmaxW-1)) or (width/len_word < charminW) :
if discard_wide and width/len_word > 3*((charmaxW-1)):
print('%s has a width larger than max image width' % imagePath)
continue
if discard_narr and (width / len_word) < (charminW/3):
print('%s has a width smaller than min image width' % imagePath)
continue
else:
new_width = len_word * random.randrange(charminW, charmaxW)
# reshapeRun all_gather on arbitrary picklable data (not necessarily tensors) the image to the new dimensions
im = im.resize((new_width, new_height))
# append with 256 to add left, upper and lower white edges
init_w = int(random.normalvariate(init_gap, init_gap / 2))
new_im = Image.new("RGB", (new_width+init_gap, imgH), color=(256,256,256))
new_im.paste(im, (abs(init_w), h_gap))
im = new_im
if author_id in IMG_DATA.keys():
IMG_DATA[author_id].append({'img':im, 'label':label})
else:
IMG_DATA[author_id] = []
IMG_DATA[author_id].append({'img':im, 'label':label})
imgByteArr = io.BytesIO()
#im.save(os.path.join(outputPath, 'IMG_'+str(cnt)+'_'+str(label)+'.jpg'))
im.save(imgByteArr, format='tiff')
wordBin = imgByteArr.getvalue()
imageKey = 'image-%09d' % cnt
labelKey = 'label-%09d' % cnt
cache[imageKey] = wordBin
if labeled:
cache[labelKey] = label
if cnt % 1000 == 0:
writeCache(env, cache)
cache = {}
print('Written %d / %d' % (cnt, nSamples))
cnt += 1
nSamples = cnt - 1
cache['num-samples'] = str(nSamples)
writeCache(env, cache)
env.close()
print('Created dataset with %d samples' % nSamples)
return IMG_DATA
def createDict(label_list, top_dir, dataset, mode, words, remove_punc):
lex_name = dataset+'_' + mode + (dataset in ['IAM','RIMES'])*('_words' * words) + (dataset=='IAM') * ('_removePunc' * remove_punc)
all_words = '-'.join(label_list).split('-')
unique_words = []
words = []
for x in tqdm(all_words):
if x!='' and x!=' ':
words.append(x)
if x not in unique_words:
unique_words.append(x)
print(len(words))
print(len(unique_words))
with open(os.path.join(top_dir, 'Lexicon', lex_name+'_stratified.txt'), "w") as file:
file.write("\n".join(unique_words))
file.close()
with open(os.path.join(top_dir, 'Lexicon', lex_name + '_NOTstratified.txt'), "w") as file:
file.write("\n".join(words))
file.close()
def printAlphabet(label_list):
# get all unique alphabets - ignoring alphabet longer than one char
all_chars = ''.join(label_list)
unique_chars = []
for x in all_chars:
if x not in unique_chars and len(x) == 1:
unique_chars.append(x)
# for unique_char in unique_chars:
print(''.join(unique_chars))
if __name__ == '__main__':
TRAIN_IDX = 'gan.iam.tr_va.gt.filter27'
TEST_IDX = 'gan.iam.test.gt.filter27'
IAM_WORD_DATASET_PATH = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/IAM/wordImages/'
XMLS_PATH = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/IAM/xmls/'
word_paths = {i.split('/')[-1][:-4]:i for i in glob.glob(IAM_WORD_DATASET_PATH + '*/*/*.png')}
id_to_wid = {i.split('/')[-1][:-4]:xmltodict.parse(open(i).read())['form']['@writer-id'] for i in glob.glob(XMLS_PATH+'/**')}
trainslist = [i[:-1] for i in open(TRAIN_IDX, 'r').readlines()]
testslist = [i[:-1] for i in open(TEST_IDX, 'r').readlines()]
dict_ = {'train':{}, 'test':{}}
for i in trainslist:
author_id = i.split(',')[0]
file_id, string = i.split(',')[1].split(' ')
file_path = word_paths[file_id]
if author_id in dict_['train']:
dict_['train'][author_id].append({'path':file_path, 'label':string})
else:
dict_['train'][author_id] = [{'path':file_path, 'label':string}]
for i in testslist:
author_id = i.split(',')[0]
file_id, string = i.split(',')[1].split(' ')
file_path = word_paths[file_id]
if author_id in dict_['test']:
dict_['test'][author_id].append({'path':file_path, 'label':string})
else:
dict_['test'][author_id] = [{'path':file_path, 'label':string}]
create_Dict = True # create a dictionary of the generated dataset
dataset = 'IAM' #CVL/IAM/RIMES/gw
mode = 'all' # tr/te/val/va1/va2/all
labeled = True
top_dir = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/'
# parameter relevant for IAM/RIMES:
words = True # use words images, otherwise use lines
#parameters relevant for IAM:
author_number = -1 # use only images of a specific writer. If the value is -1, use all writers, otherwise use the index of this specific writer
remove_punc = True # remove images which include only one punctuation mark from the list ['.', '', ',', '"', "'", '(', ')', ':', ';', '!']
resize = 'charResize' # charResize|keepRatio|noResize - type of resize,
# char - resize so that each character's width will be in a specific range (inside this range the width will be chosen randomly),
# keepRatio - resize to a specific image height while keeping the height-width aspect-ratio the same.
# noResize - do not resize the image
imgH = 32 # height of the resized image
init_gap = 0 # insert a gap before the beginning of the text with this number of pixels
charmaxW = 17 # The maximum character width
charminW = 16 # The minimum character width
h_gap = 0 # Insert a gap below and above the text
discard_wide = True # Discard images which have a character width 3 times larger than the maximum allowed character size (instead of resizing them) - this helps discard outlier images
discard_narr = True # Discard images which have a character width 3 times smaller than the minimum allowed charcter size.
IMG_DATA = {}
for idx_auth in range(1669999):
print ('Processing '+ str(idx_auth))
image_path_list, label_list, outputPath, author_id = create_img_label_list(top_dir,dataset, mode, words, idx_auth, remove_punc)
IMG_DATA[author_id] = []
# in a previous version we also cut the white edges of the image to keep a tight rectangle around the word but it
# seems in all the datasets we use this is already the case so I removed it. If there are problems maybe we should add this back.
IMG_DATA = createDataset(IMG_DATA, image_path_list, label_list, outputPath, mode, author_id, remove_punc, resize, imgH, init_gap, h_gap, charminW, charmaxW, discard_wide, discard_narr, labeled)
#if create_Dict:
# createDict(label_list, top_dir, dataset, mode, words, remove_punc)
#printAlphabet(label_list)
import pickle
dict_ = {}
for id_ in IMG_DATA.keys():
author_id = id_to_wid[id_]
if author_id in dict_.keys():
dict_[author_id].extend(IMG_DATA[id_])
else:
dict_[author_id] = IMG_DATA[id_]
#pickle.dump(IMG_DATA, '/root/IAM')