Spaces:
Runtime error
Runtime error
"""This module contains simple helper functions """ | |
from __future__ import print_function | |
import torch | |
import numpy as np | |
from PIL import Image | |
import os | |
import torch.nn.functional as F | |
from torch.autograd import Variable | |
def random_word(len_word, alphabet): | |
# generate a word constructed from len_word characters where each character is randomly chosen from the alphabet. | |
char = np.random.randint(low=0, high=len(alphabet), size=len_word) | |
word = [alphabet[c] for c in char] | |
return ''.join(word) | |
def load_network(net, save_dir, epoch): | |
"""Load all the networks from the disk. | |
Parameters: | |
epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name) | |
""" | |
load_filename = '%s_net_%s.pth' % (epoch, net.name) | |
load_path = os.path.join(save_dir, load_filename) | |
# if you are using PyTorch newer than 0.4 (e.g., built from | |
# GitHub source), you can remove str() on self.device | |
state_dict = torch.load(load_path) | |
if hasattr(state_dict, '_metadata'): | |
del state_dict._metadata | |
net.load_state_dict(state_dict) | |
return net | |
def writeCache(env, cache): | |
with env.begin(write=True) as txn: | |
for k, v in cache.items(): | |
if type(k) == str: | |
k = k.encode() | |
if type(v) == str: | |
v = v.encode() | |
txn.put(k, v) | |
def loadData(v, data): | |
with torch.no_grad(): | |
v.resize_(data.size()).copy_(data) | |
def multiple_replace(string, rep_dict): | |
for key in rep_dict.keys(): | |
string = string.replace(key, rep_dict[key]) | |
return string | |
def get_curr_data(data, batch_size, counter): | |
curr_data = {} | |
for key in data: | |
curr_data[key] = data[key][batch_size*counter:batch_size*(counter+1)] | |
return curr_data | |
# Utility file to seed rngs | |
def seed_rng(seed): | |
torch.manual_seed(seed) | |
torch.cuda.manual_seed(seed) | |
np.random.seed(seed) | |
# turn tensor of classes to tensor of one hot tensors: | |
def make_one_hot(labels, len_labels, n_classes): | |
one_hot = torch.zeros((labels.shape[0], labels.shape[1], n_classes),dtype=torch.float32) | |
for i in range(len(labels)): | |
one_hot[i,np.array(range(len_labels[i])), labels[i,:len_labels[i]]-1]=1 | |
return one_hot | |
# Hinge Loss | |
def loss_hinge_dis(dis_fake, dis_real, len_text_fake, len_text, mask_loss): | |
mask_real = torch.ones(dis_real.shape).to(dis_real.device) | |
mask_fake = torch.ones(dis_fake.shape).to(dis_fake.device) | |
if mask_loss and len(dis_fake.shape)>2: | |
for i in range(len(len_text)): | |
mask_real[i, :, :, len_text[i]:] = 0 | |
mask_fake[i, :, :, len_text_fake[i]:] = 0 | |
loss_real = torch.sum(F.relu(1. - dis_real * mask_real))/torch.sum(mask_real) | |
loss_fake = torch.sum(F.relu(1. + dis_fake * mask_fake))/torch.sum(mask_fake) | |
return loss_real, loss_fake | |
def loss_hinge_gen(dis_fake, len_text_fake, mask_loss): | |
mask_fake = torch.ones(dis_fake.shape).to(dis_fake.device) | |
if mask_loss and len(dis_fake.shape)>2: | |
for i in range(len(len_text_fake)): | |
mask_fake[i, :, :, len_text_fake[i]:] = 0 | |
loss = -torch.sum(dis_fake*mask_fake)/torch.sum(mask_fake) | |
return loss | |
def loss_std(z, lengths, mask_loss): | |
loss_std = torch.zeros(1).to(z.device) | |
z_mean = torch.ones((z.shape[0], z.shape[1])).to(z.device) | |
for i in range(len(lengths)): | |
if mask_loss: | |
if lengths[i]>1: | |
loss_std += torch.mean(torch.std(z[i, :, :, :lengths[i]], 2)) | |
z_mean[i,:] = torch.mean(z[i, :, :, :lengths[i]], 2).squeeze(1) | |
else: | |
z_mean[i, :] = z[i, :, :, 0].squeeze(1) | |
else: | |
loss_std += torch.mean(torch.std(z[i, :, :, :], 2)) | |
z_mean[i,:] = torch.mean(z[i, :, :, :], 2).squeeze(1) | |
loss_std = loss_std/z.shape[0] | |
return loss_std, z_mean | |
# Convenience utility to switch off requires_grad | |
def toggle_grad(model, on_or_off): | |
for param in model.parameters(): | |
param.requires_grad = on_or_off | |
# Apply modified ortho reg to a model | |
# This function is an optimized version that directly computes the gradient, | |
# instead of computing and then differentiating the loss. | |
def ortho(model, strength=1e-4, blacklist=[]): | |
with torch.no_grad(): | |
for param in model.parameters(): | |
# Only apply this to parameters with at least 2 axes, and not in the blacklist | |
if len(param.shape) < 2 or any([param is item for item in blacklist]): | |
continue | |
w = param.view(param.shape[0], -1) | |
grad = (2 * torch.mm(torch.mm(w, w.t()) | |
* (1. - torch.eye(w.shape[0], device=w.device)), w)) | |
param.grad.data += strength * grad.view(param.shape) | |
# Default ortho reg | |
# This function is an optimized version that directly computes the gradient, | |
# instead of computing and then differentiating the loss. | |
def default_ortho(model, strength=1e-4, blacklist=[]): | |
with torch.no_grad(): | |
for param in model.parameters(): | |
# Only apply this to parameters with at least 2 axes & not in blacklist | |
if len(param.shape) < 2 or param in blacklist: | |
continue | |
w = param.view(param.shape[0], -1) | |
grad = (2 * torch.mm(torch.mm(w, w.t()) | |
- torch.eye(w.shape[0], device=w.device), w)) | |
param.grad.data += strength * grad.view(param.shape) | |
# Convenience utility to switch off requires_grad | |
def toggle_grad(model, on_or_off): | |
for param in model.parameters(): | |
param.requires_grad = on_or_off | |
# A highly simplified convenience class for sampling from distributions | |
# One could also use PyTorch's inbuilt distributions package. | |
# Note that this class requires initialization to proceed as | |
# x = Distribution(torch.randn(size)) | |
# x.init_distribution(dist_type, **dist_kwargs) | |
# x = x.to(device,dtype) | |
# This is partially based on https://discuss.pytorch.org/t/subclassing-torch-tensor/23754/2 | |
class Distribution(torch.Tensor): | |
# Init the params of the distribution | |
def init_distribution(self, dist_type, **kwargs): | |
seed_rng(kwargs['seed']) | |
self.dist_type = dist_type | |
self.dist_kwargs = kwargs | |
if self.dist_type == 'normal': | |
self.mean, self.var = kwargs['mean'], kwargs['var'] | |
elif self.dist_type == 'categorical': | |
self.num_categories = kwargs['num_categories'] | |
elif self.dist_type == 'poisson': | |
self.lam = kwargs['var'] | |
elif self.dist_type == 'gamma': | |
self.scale = kwargs['var'] | |
def sample_(self): | |
if self.dist_type == 'normal': | |
self.normal_(self.mean, self.var) | |
elif self.dist_type == 'categorical': | |
self.random_(0, self.num_categories) | |
elif self.dist_type == 'poisson': | |
type = self.type() | |
device = self.device | |
data = np.random.poisson(self.lam, self.size()) | |
self.data = torch.from_numpy(data).type(type).to(device) | |
elif self.dist_type == 'gamma': | |
type = self.type() | |
device = self.device | |
data = np.random.gamma(shape=1, scale=self.scale, size=self.size()) | |
self.data = torch.from_numpy(data).type(type).to(device) | |
# return self.variable | |
# Silly hack: overwrite the to() method to wrap the new object | |
# in a distribution as well | |
def to(self, *args, **kwargs): | |
new_obj = Distribution(self) | |
new_obj.init_distribution(self.dist_type, **self.dist_kwargs) | |
new_obj.data = super().to(*args, **kwargs) | |
return new_obj | |
def to_device(net, gpu_ids): | |
if len(gpu_ids) > 0: | |
assert(torch.cuda.is_available()) | |
net.to(gpu_ids[0]) | |
# net = torch.nn.DataParallel(net, gpu_ids) # multi-GPUs | |
if len(gpu_ids)>1: | |
net = torch.nn.DataParallel(net, device_ids=gpu_ids).cuda() | |
# net = torch.nn.DistributedDataParallel(net) | |
return net | |
# Convenience function to prepare a z and y vector | |
def prepare_z_y(G_batch_size, dim_z, nclasses, device='cuda', | |
fp16=False, z_var=1.0, z_dist='normal', seed=0): | |
z_ = Distribution(torch.randn(G_batch_size, dim_z, requires_grad=False)) | |
z_.init_distribution(z_dist, mean=0, var=z_var, seed=seed) | |
z_ = z_.to(device, torch.float16 if fp16 else torch.float32) | |
if fp16: | |
z_ = z_.half() | |
y_ = Distribution(torch.zeros(G_batch_size, requires_grad=False)) | |
y_.init_distribution('categorical', num_categories=nclasses, seed=seed) | |
y_ = y_.to(device, torch.int64) | |
return z_, y_ | |
def tensor2im(input_image, imtype=np.uint8): | |
""""Converts a Tensor array into a numpy image array. | |
Parameters: | |
input_image (tensor) -- the input image tensor array | |
imtype (type) -- the desired type of the converted numpy array | |
""" | |
if not isinstance(input_image, np.ndarray): | |
if isinstance(input_image, torch.Tensor): # get the data from a variable | |
image_tensor = input_image.data | |
else: | |
return input_image | |
image_numpy = image_tensor[0].cpu().float().numpy() # convert it into a numpy array | |
if image_numpy.shape[0] == 1: # grayscale to RGB | |
image_numpy = np.tile(image_numpy, (3, 1, 1)) | |
image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0 # post-processing: tranpose and scaling | |
else: # if it is a numpy array, do nothing | |
image_numpy = input_image | |
return image_numpy.astype(imtype) | |
def diagnose_network(net, name='network'): | |
"""Calculate and print the mean of average absolute(gradients) | |
Parameters: | |
net (torch network) -- Torch network | |
name (str) -- the name of the network | |
""" | |
mean = 0.0 | |
count = 0 | |
for param in net.parameters(): | |
if param.grad is not None: | |
mean += torch.mean(torch.abs(param.grad.data)) | |
count += 1 | |
if count > 0: | |
mean = mean / count | |
print(name) | |
print(mean) | |
def save_image(image_numpy, image_path): | |
"""Save a numpy image to the disk | |
Parameters: | |
image_numpy (numpy array) -- input numpy array | |
image_path (str) -- the path of the image | |
""" | |
image_pil = Image.fromarray(image_numpy) | |
image_pil.save(image_path) | |
def print_numpy(x, val=True, shp=False): | |
"""Print the mean, min, max, median, std, and size of a numpy array | |
Parameters: | |
val (bool) -- if print the values of the numpy array | |
shp (bool) -- if print the shape of the numpy array | |
""" | |
x = x.astype(np.float64) | |
if shp: | |
print('shape,', x.shape) | |
if val: | |
x = x.flatten() | |
print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % ( | |
np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x))) | |
def mkdirs(paths): | |
"""create empty directories if they don't exist | |
Parameters: | |
paths (str list) -- a list of directory paths | |
""" | |
if isinstance(paths, list) and not isinstance(paths, str): | |
for path in paths: | |
mkdir(path) | |
else: | |
mkdir(paths) | |
def mkdir(path): | |
"""create a single empty directory if it didn't exist | |
Parameters: | |
path (str) -- a single directory path | |
""" | |
if not os.path.exists(path): | |
os.makedirs(path) | |