HWT / data /dataset.py
ankankbhunia's picture
INIT
13580fb verified
raw
history blame
7.61 kB
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT
import random
import torch
from torch.utils.data import Dataset
from torch.utils.data import sampler
#import lmdb
import torchvision.transforms as transforms
import six
import sys
from PIL import Image
import numpy as np
import os
import sys
import pickle
import numpy as np
from params import *
import glob, cv2
import torchvision.transforms as transforms
def crop_(input):
image = Image.fromarray(input)
image = image.convert('L')
binary_image = image.point(lambda x: 0 if x > 127 else 255, '1')
bbox = binary_image.getbbox()
cropped_image = image.crop(bbox)
return np.array(cropped_image)
def get_transform(grayscale=False, convert=True):
transform_list = []
if grayscale:
transform_list.append(transforms.Grayscale(1))
if convert:
transform_list += [transforms.ToTensor()]
if grayscale:
transform_list += [transforms.Normalize((0.5,), (0.5,))]
else:
transform_list += [transforms.Normalize((0.5, 0.5, 0.5), (0.5, 0.5, 0.5))]
return transforms.Compose(transform_list)
def load_itw_samples(folder_path, num_samples = 15):
if isinstance(folder_path, str):
paths = glob.glob(f'{folder_path}/*')
else:
paths = folder_path
paths = np.random.choice(paths, num_samples, replace = len(paths)<=num_samples)
words = [os.path.basename(path_i)[:-4] for path_i in paths]
imgs = [np.array(Image.open(i).convert('L')) for i in paths]
imgs = [crop_(im) for im in imgs]
imgs = [cv2.resize(imgs_i, (int(32*(imgs_i.shape[1]/imgs_i.shape[0])), 32)) for imgs_i in imgs]
max_width = 192
imgs_pad = []
imgs_wids = []
trans_fn = get_transform(grayscale=True)
for img in imgs:
img = 255 - img
img_height, img_width = img.shape[0], img.shape[1]
outImg = np.zeros(( img_height, max_width), dtype='float32')
outImg[:, :img_width] = img[:, :max_width]
img = 255 - outImg
imgs_pad.append(trans_fn((Image.fromarray(img))))
imgs_wids.append(img_width)
imgs_pad = torch.cat(imgs_pad, 0)
return imgs_pad.unsqueeze(0), torch.Tensor(imgs_wids).unsqueeze(0)
class TextDataset():
def __init__(self, base_path = DATASET_PATHS, num_examples = 15, target_transform=None):
self.NUM_EXAMPLES = num_examples
#base_path = DATASET_PATHS
file_to_store = open(base_path, "rb")
self.IMG_DATA = pickle.load(file_to_store)['train']
self.IMG_DATA = dict(list( self.IMG_DATA.items())) #[:NUM_WRITERS])
if 'None' in self.IMG_DATA.keys():
del self.IMG_DATA['None']
self.author_id = list(self.IMG_DATA.keys())
self.transform = get_transform(grayscale=True)
self.target_transform = target_transform
self.collate_fn = TextCollator()
def __len__(self):
return len(self.author_id)
def __getitem__(self, index):
NUM_SAMPLES = self.NUM_EXAMPLES
author_id = self.author_id[index]
self.IMG_DATA_AUTHOR = self.IMG_DATA[author_id]
random_idxs = np.random.choice(len(self.IMG_DATA_AUTHOR), NUM_SAMPLES, replace = True)
rand_id_real = np.random.choice(len(self.IMG_DATA_AUTHOR))
real_img = self.transform(self.IMG_DATA_AUTHOR[rand_id_real]['img'].convert('L'))
real_labels = self.IMG_DATA_AUTHOR[rand_id_real]['label'].encode()
imgs = [np.array(self.IMG_DATA_AUTHOR[idx]['img'].convert('L')) for idx in random_idxs]
labels = [self.IMG_DATA_AUTHOR[idx]['label'].encode() for idx in random_idxs]
max_width = 192 #[img.shape[1] for img in imgs]
imgs_pad = []
imgs_wids = []
for img in imgs:
img = 255 - img
img_height, img_width = img.shape[0], img.shape[1]
outImg = np.zeros(( img_height, max_width), dtype='float32')
outImg[:, :img_width] = img[:, :max_width]
img = 255 - outImg
imgs_pad.append(self.transform((Image.fromarray(img))))
imgs_wids.append(img_width)
imgs_pad = torch.cat(imgs_pad, 0)
item = {'simg': imgs_pad, 'swids':imgs_wids, 'img' : real_img, 'label':real_labels,'img_path':'img_path', 'idx':'indexes', 'wcl':index}
return item
class TextDatasetval():
def __init__(self, base_path = DATASET_PATHS, num_examples = 15, target_transform=None):
self.NUM_EXAMPLES = num_examples
#base_path = DATASET_PATHS
file_to_store = open(base_path, "rb")
self.IMG_DATA = pickle.load(file_to_store)['test']
self.IMG_DATA = dict(list( self.IMG_DATA.items()))#[NUM_WRITERS:])
if 'None' in self.IMG_DATA.keys():
del self.IMG_DATA['None']
self.author_id = list(self.IMG_DATA.keys())
self.transform = get_transform(grayscale=True)
self.target_transform = target_transform
self.collate_fn = TextCollator()
def __len__(self):
return len(self.author_id)
def __getitem__(self, index):
NUM_SAMPLES = self.NUM_EXAMPLES
author_id = self.author_id[index]
self.IMG_DATA_AUTHOR = self.IMG_DATA[author_id]
random_idxs = np.random.choice(len(self.IMG_DATA_AUTHOR), NUM_SAMPLES, replace = True)
rand_id_real = np.random.choice(len(self.IMG_DATA_AUTHOR))
real_img = self.transform(self.IMG_DATA_AUTHOR[rand_id_real]['img'].convert('L'))
real_labels = self.IMG_DATA_AUTHOR[rand_id_real]['label'].encode()
imgs = [np.array(self.IMG_DATA_AUTHOR[idx]['img'].convert('L')) for idx in random_idxs]
labels = [self.IMG_DATA_AUTHOR[idx]['label'].encode() for idx in random_idxs]
max_width = 192 #[img.shape[1] for img in imgs]
imgs_pad = []
imgs_wids = []
for img in imgs:
img = 255 - img
img_height, img_width = img.shape[0], img.shape[1]
outImg = np.zeros(( img_height, max_width), dtype='float32')
outImg[:, :img_width] = img[:, :max_width]
img = 255 - outImg
imgs_pad.append(self.transform((Image.fromarray(img))))
imgs_wids.append(img_width)
imgs_pad = torch.cat(imgs_pad, 0)
item = {'simg': imgs_pad, 'swids':imgs_wids, 'img' : real_img, 'label':real_labels,'img_path':'img_path', 'idx':'indexes', 'wcl':index}
return item
class TextCollator(object):
def __init__(self):
self.resolution = resolution
def __call__(self, batch):
img_path = [item['img_path'] for item in batch]
width = [item['img'].shape[2] for item in batch]
indexes = [item['idx'] for item in batch]
simgs = torch.stack([item['simg'] for item in batch], 0)
wcls = torch.Tensor([item['wcl'] for item in batch])
swids = torch.Tensor([item['swids'] for item in batch])
imgs = torch.ones([len(batch), batch[0]['img'].shape[0], batch[0]['img'].shape[1], max(width)], dtype=torch.float32)
for idx, item in enumerate(batch):
try:
imgs[idx, :, :, 0:item['img'].shape[2]] = item['img']
except:
print(imgs.shape)
item = {'img': imgs, 'img_path':img_path, 'idx':indexes, 'simg': simgs, 'swids': swids, 'wcl':wcls}
if 'label' in batch[0].keys():
labels = [item['label'] for item in batch]
item['label'] = labels
if 'z' in batch[0].keys():
z = torch.stack([item['z'] for item in batch])
item['z'] = z
return item