File size: 17,314 Bytes
13580fb
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458


# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT

import os
import lmdb, tqdm
import cv2
import numpy as np
import argparse
import shutil
import sys
from PIL import Image
import random
import io
import xmltodict
import html
from sklearn.decomposition import PCA
import math
from tqdm import tqdm
from itertools import compress
import glob
def checkImageIsValid(imageBin):
    if imageBin is None:
        return False
    imageBuf = np.fromstring(imageBin, dtype=np.uint8)
    img = cv2.imdecode(imageBuf, cv2.IMREAD_GRAYSCALE)
    imgH, imgW = img.shape[0], img.shape[1]
    if imgH * imgW == 0:
        return False
    return True


def writeCache(env, cache):
    with env.begin(write=True) as txn:
        for k, v in cache.items():
            if type(k) == str:
                k = k.encode()
            if type(v) == str:
                v = v.encode()
            txn.put(k, v)


def find_rot_angle(idx_letters):
    idx_letters = np.array(idx_letters).transpose()
    pca = PCA(n_components=2)
    pca.fit(idx_letters)
    comp = pca.components_
    angle = math.atan(comp[0][0]/comp[0][1])
    return math.degrees(angle)

def read_data_from_folder(folder_path):
    image_path_list = []
    label_list = []
    pics = os.listdir(folder_path)
    pics.sort(key=lambda i: len(i))
    for pic in pics:
        image_path_list.append(folder_path + '/' + pic)
        label_list.append(pic.split('_')[0])
    return image_path_list, label_list


def read_data_from_file(file_path):
    image_path_list = []
    label_list = []
    f = open(file_path)
    while True:
        line1 = f.readline()
        line2 = f.readline()
        if not line1 or not line2:
            break
        line1 = line1.replace('\r', '').replace('\n', '')
        line2 = line2.replace('\r', '').replace('\n', '')
        image_path_list.append(line1)
        label_list.append(line2)

    return image_path_list, label_list


def show_demo(demo_number, image_path_list, label_list):
    print('\nShow some demo to prevent creating wrong lmdb data')
    print('The first line is the path to image and the second line is the image label')
    for i in range(demo_number):
        print('image: %s\nlabel: %s\n' % (image_path_list[i], label_list[i]))

def create_img_label_list(top_dir,dataset, mode, words, author_number, remove_punc):
    root_dir = os.path.join(top_dir, dataset)
    output_dir = root_dir + (dataset=='IAM')*('/words'*words + '/lines'*(not words))
    image_path_list, label_list = [], []
    author_id = 'None'
    mode = 'all'
    if dataset=='CVL':
        root_dir = os.path.join(root_dir, 'cvl-database-1-1')
        if words:
            images_name = 'words'
        else:
            images_name = 'lines'
        if mode == 'tr' or mode == 'val':
            mode_dir = ['trainset']
        elif mode == 'te':
            mode_dir = ['testset']
        elif mode == 'all':
            mode_dir = ['testset', 'trainset']
        idx = 1
        for mod in mode_dir:
            images_dir = os.path.join(root_dir, mod, images_name)
            for path, subdirs, files in os.walk(images_dir):
                for name in files:
                    if (mode == 'tr' and idx >= 10000) or (
                            mode == 'val' and idx < 10000) or mode == 'te' or mode == 'all' or mode == 'tr_3te':
                        if os.path.splitext(name)[0].split('-')[1] == '6':
                            continue
                        label = os.path.splitext(name)[0].split('-')[-1]

                        imagePath = os.path.join(path, name)
                        label_list.append(label)
                        image_path_list.append(imagePath)
                    idx += 1



    elif dataset=='IAM':
        labels_name = 'original'
        if mode=='all':
            mode = ['te', 'va1', 'va2', 'tr']
        elif mode=='valtest':
            mode=['te', 'va1', 'va2']
        else:
            mode = [mode]
        if words:
            images_name = 'wordImages'
        else:
            images_name = 'lineImages'
        images_dir = os.path.join(root_dir, images_name)
        labels_dir = os.path.join(root_dir, labels_name)
        full_ann_files = []
        im_dirs = []
        line_ann_dirs = []
        image_path_list, label_list = [], []
        for mod in mode:
            part_file = os.path.join(root_dir, 'original_partition', mod + '.lst')
            with open(part_file)as fp:
                for line in fp:
                    name = line.split('-')
                    if int(name[-1][:-1]) == 0:
                        anno_file = os.path.join(labels_dir, '-'.join(name[:2]) + '.xml')
                        full_ann_files.append(anno_file)
                        im_dir = os.path.join(images_dir, name[0], '-'.join(name[:2]))
                        im_dirs.append(im_dir)

        if author_number >= 0:
            full_ann_files = [full_ann_files[author_number]]
            im_dirs = [im_dirs[author_number]]
            author_id = im_dirs[0].split('/')[-1]

        lables_to_skip = ['.', '', ',', '"', "'", '(', ')', ':', ';', '!']
        for i, anno_file in enumerate(full_ann_files):
            with open(anno_file) as f:
                try:
                    line = f.read()
                    annotation_content = xmltodict.parse(line)
                    lines = annotation_content['form']['handwritten-part']['line']
                    if words:
                        lines_list = []
                        for j in range(len(lines)):
                            lines_list.extend(lines[j]['word'])
                        lines = lines_list
                except:
                    print('line is not decodable')
                for line in lines:
                    try:
                        label = html.unescape(line['@text'])
                    except:
                        continue
                    if remove_punc and label in lables_to_skip:
                        continue
                    id = line['@id']
                    imagePath = os.path.join(im_dirs[i], id + '.png')
                    image_path_list.append(imagePath)
                    label_list.append(label)

    elif dataset=='RIMES':
        if mode=='tr':
            images_dir = os.path.join(root_dir, 'orig','training_WR')
            gt_file = os.path.join(root_dir, 'orig',
                               'groundtruth_training_icdar2011.txt')
        elif mode=='te':
            images_dir = os.path.join(root_dir, 'orig', 'testdataset_ICDAR')
            gt_file = os.path.join(root_dir, 'orig',
                                       'ground_truth_test_icdar2011.txt')
        elif mode=='val':
            images_dir = os.path.join(root_dir, 'orig', 'valdataset_ICDAR')
            gt_file = os.path.join(root_dir, 'orig',
                                       'ground_truth_validation_icdar2011.txt')
        with open(gt_file, 'r') as f:
            lines = f.readlines()
        image_path_list = [os.path.join(images_dir, line.split(' ')[0]) for line in lines if len(line.split(' ')) > 1]

        label_list = [line.split(' ')[1][:-1] for line in lines if len(line.split(' ')) > 1]

    return image_path_list, label_list, output_dir, author_id

def createDataset(IMG_DATA, image_path_list, label_list, outputPath, mode, author_id, remove_punc, resize, imgH, init_gap, h_gap, charminW, charmaxW, discard_wide, discard_narr, labeled):
    assert (len(image_path_list) == len(label_list))
    nSamples = len(image_path_list)

    outputPath = outputPath + (resize=='charResize') * ('/h%schar%sto%s/'%(imgH, charminW, charmaxW)) + (resize=='keepRatio') * ('/h%s/'%(imgH)) \
                 + (resize=='noResize') * ('/noResize/') + (author_id!='None') * ('single_authors/'+author_id+'/' ) \
                 + mode + (resize!='noResize') * (('_initGap%s'%(init_gap)) * (init_gap>0) + ('_hGap%s'%(h_gap)) * (h_gap>0) \
                 + '_NoDiscard_wide' * (not discard_wide) + '_NoDiscard_wide' * (not discard_narr))+'_unlabeld' * (not labeled) +\
                 (('IAM' in outputPath) and remove_punc) *'_removePunc'

    outputPath_ = '/root/Handwritten_data/IAM/authors' + (resize=='charResize') * ('/h%schar%sto%s/'%(imgH, charminW, charmaxW)) + (resize=='keepRatio') * ('/h%s/'%(imgH)) \
                 + (resize=='noResize') * ('/noResize/') + (author_id!='None') * ('single_authors/'+author_id+'/' ) \
                 + mode + (resize!='noResize') * (('_initGap%s'%(init_gap)) * (init_gap>0) + ('_hGap%s'%(h_gap)) * (h_gap>0) \
                 + '_NoDiscard_wide' * (not discard_wide) + '_NoDiscard_wide' * (not discard_narr))+'_unlabeld' * (not labeled) +\
                 (('IAM' in outputPath) and remove_punc) *'_removePunc'
    print(outputPath)
    if os.path.exists(outputPath):
        shutil.rmtree(outputPath)
        os.makedirs(outputPath)
    else:
        os.makedirs(outputPath)
    env = lmdb.open(outputPath, map_size=1099511627776)
    cache = {}
    cnt = 1
    discard_wide = False

   


    for i in tqdm(range(nSamples)):
        imagePath = image_path_list[i]
        #author_id = image_path_list[i].split('/')[-2]
        label = label_list[i]
        if not os.path.exists(imagePath):
            print('%s does not exist' % imagePath)
            continue
        try:
            im = Image.open(imagePath)
        except:
            continue
        if resize in ['charResize', 'keepRatio']:
            width, height = im.size
            new_height = imgH - (h_gap * 2)
            len_word = len(label)
            width = int(width * imgH / height)
            new_width = width
            if resize=='charResize':
                if (width/len_word > (charmaxW-1)) or (width/len_word < charminW) :
                    if discard_wide and width/len_word > 3*((charmaxW-1)):
                        print('%s has a width larger than max image width' % imagePath)
                        continue
                    if discard_narr and (width / len_word) < (charminW/3):
                        print('%s has a width smaller than min image width' % imagePath)
                        continue
                    else:
                        new_width = len_word * random.randrange(charminW, charmaxW)

            # reshapeRun all_gather on arbitrary picklable data (not necessarily tensors) the image to the new dimensions
            im = im.resize((new_width, new_height))
            # append with 256 to add left, upper and lower white edges
            init_w = int(random.normalvariate(init_gap, init_gap / 2))
            new_im = Image.new("RGB", (new_width+init_gap, imgH), color=(256,256,256))
            new_im.paste(im, (abs(init_w), h_gap))
            im = new_im
        
        if author_id in IMG_DATA.keys():
            IMG_DATA[author_id].append({'img':im, 'label':label})

        else:
            IMG_DATA[author_id] = []
            IMG_DATA[author_id].append({'img':im, 'label':label})

        imgByteArr = io.BytesIO()
        #im.save(os.path.join(outputPath, 'IMG_'+str(cnt)+'_'+str(label)+'.jpg'))
        im.save(imgByteArr, format='tiff')
        wordBin = imgByteArr.getvalue()
        imageKey = 'image-%09d' % cnt
        labelKey = 'label-%09d' % cnt

        cache[imageKey] = wordBin
        if labeled:
            cache[labelKey] = label
        if cnt % 1000 == 0:
            writeCache(env, cache)
            cache = {}
            print('Written %d / %d' % (cnt, nSamples))
        cnt += 1

    nSamples = cnt - 1
    cache['num-samples'] = str(nSamples)
    writeCache(env, cache)
    env.close()
    print('Created dataset with %d samples' % nSamples)






































    return IMG_DATA

def createDict(label_list, top_dir, dataset, mode, words, remove_punc):
    lex_name = dataset+'_' + mode + (dataset in ['IAM','RIMES'])*('_words' * words) + (dataset=='IAM') * ('_removePunc' * remove_punc)
    all_words = '-'.join(label_list).split('-')
    unique_words = []
    words = []
    for x in tqdm(all_words):
        if x!='' and x!=' ':
            words.append(x)
            if x not in unique_words:
                unique_words.append(x)
    print(len(words))
    print(len(unique_words))
    with open(os.path.join(top_dir, 'Lexicon', lex_name+'_stratified.txt'), "w") as file:
        file.write("\n".join(unique_words))
    file.close()
    with open(os.path.join(top_dir, 'Lexicon', lex_name + '_NOTstratified.txt'), "w") as file:
        file.write("\n".join(words))
    file.close()

def printAlphabet(label_list):
    # get all unique alphabets - ignoring alphabet longer than one char
    all_chars = ''.join(label_list)
    unique_chars = []
    for x in all_chars:
        if x not in unique_chars and len(x) == 1:
            unique_chars.append(x)

    # for unique_char in unique_chars:
    print(''.join(unique_chars))

if __name__ == '__main__':

    TRAIN_IDX = 'gan.iam.tr_va.gt.filter27'
    TEST_IDX =  'gan.iam.test.gt.filter27'
    IAM_WORD_DATASET_PATH = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/IAM/wordImages/'
    XMLS_PATH = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/IAM/xmls/'
    word_paths = {i.split('/')[-1][:-4]:i for i in glob.glob(IAM_WORD_DATASET_PATH + '*/*/*.png')}
    id_to_wid = {i.split('/')[-1][:-4]:xmltodict.parse(open(i).read())['form']['@writer-id'] for i in glob.glob(XMLS_PATH+'/**')}
    trainslist = [i[:-1] for i in open(TRAIN_IDX, 'r').readlines()]
    testslist = [i[:-1] for i in open(TEST_IDX, 'r').readlines()]

    dict_ = {'train':{}, 'test':{}}

    for i in trainslist:

        author_id = i.split(',')[0]
        file_id, string = i.split(',')[1].split(' ')

        file_path = word_paths[file_id]

        if author_id in dict_['train']:
            dict_['train'][author_id].append({'path':file_path, 'label':string})
        else:
            dict_['train'][author_id] =  [{'path':file_path, 'label':string}]

    for i in testslist:

        author_id = i.split(',')[0]
        file_id, string = i.split(',')[1].split(' ')

        file_path = word_paths[file_id]

        if author_id in dict_['test']:
            dict_['test'][author_id].append({'path':file_path, 'label':string})
        else:
            dict_['test'][author_id] =  [{'path':file_path, 'label':string}]


    create_Dict = True # create a dictionary of the generated dataset
    dataset = 'IAM'     #CVL/IAM/RIMES/gw
    mode = 'all'        # tr/te/val/va1/va2/all
    labeled = True
    top_dir = '../../data/IAM/nfs/users/ext_ankan.bhunia/data/Handwritten_data/'
    # parameter relevant for IAM/RIMES:
    words = True        # use words images, otherwise use lines
    #parameters relevant for IAM:
    author_number = -1  # use only images of a specific writer. If the value is -1, use all writers, otherwise use the index of this specific writer
    remove_punc = True  # remove images which include only one punctuation mark from the list ['.', '', ',', '"', "'", '(', ')', ':', ';', '!']

    resize = 'charResize'  # charResize|keepRatio|noResize - type of resize,
                        # char - resize so that each character's width will be in a specific range (inside this range the width will be chosen randomly),
                        # keepRatio - resize to a specific image height while keeping the height-width aspect-ratio the same.
                        # noResize - do not resize the image
    imgH = 32           # height of the resized image
    init_gap = 0        # insert a gap before the beginning of the text with this number of pixels
    charmaxW = 17       # The maximum character width
    charminW = 16       # The minimum character width
    h_gap = 0           # Insert a gap below and above the text
    discard_wide = True # Discard images which have a character width 3 times larger than the maximum allowed character size (instead of resizing them) - this helps discard outlier images
    discard_narr = True # Discard images which have a character width 3 times smaller than the minimum allowed charcter size.
    

    IMG_DATA = {}



    for idx_auth in range(1669999):

        
        
        print ('Processing '+ str(idx_auth))
        image_path_list, label_list, outputPath, author_id = create_img_label_list(top_dir,dataset, mode, words, idx_auth, remove_punc)
        IMG_DATA[author_id] = []
        # in a previous version we also cut the white edges of the image to keep a tight rectangle around the word but it
        # seems in all the datasets we use this is already the case so I removed it. If there are problems maybe we should add this back.
        IMG_DATA = createDataset(IMG_DATA, image_path_list, label_list, outputPath, mode, author_id, remove_punc, resize, imgH, init_gap, h_gap, charminW, charmaxW, discard_wide, discard_narr, labeled)
    
    
        #if create_Dict:
        #    createDict(label_list, top_dir, dataset, mode, words, remove_punc)
        #printAlphabet(label_list)
    import pickle

    dict_ = {}
    for id_ in IMG_DATA.keys():
        author_id = id_to_wid[id_]

        if author_id in dict_.keys():
            dict_[author_id].extend(IMG_DATA[id_])
        else:
            dict_[author_id] = IMG_DATA[id_]

    #pickle.dump(IMG_DATA, '/root/IAM')