File size: 41,510 Bytes
9acea67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
# Copyright Amazon.com, Inc. or its affiliates. All Rights Reserved.
# SPDX-License-Identifier: MIT

import numpy as np
import math
import functools

import torch
import torch.nn as nn
from torch.nn import init
import torch.optim as optim
import torch.nn.functional as F
from torch.nn import Parameter as P
from .transformer import Transformer 
from . import BigGAN_layers as layers
from .sync_batchnorm import SynchronizedBatchNorm2d as SyncBatchNorm2d
from util.util import to_device, load_network
from .networks import init_weights
from params import *
# Attention is passed in in the format '32_64' to mean applying an attention
# block at both resolution 32x32 and 64x64. Just '64' will apply at 64x64.

from models.blocks import LinearBlock, Conv2dBlock, ResBlocks, ActFirstResBlock

class Decoder(nn.Module):
    def __init__(self, ups=3, n_res=2, dim=512, out_dim=1, res_norm='adain', activ='relu', pad_type='reflect'):
        super(Decoder, self).__init__()

        self.model = []
        self.model += [ResBlocks(n_res, dim, res_norm,
                                 activ, pad_type=pad_type)]
        for i in range(ups):
            self.model += [nn.Upsample(scale_factor=2),
                           Conv2dBlock(dim, dim // 2, 5, 1, 2,
                                       norm='in',
                                       activation=activ,
                                       pad_type=pad_type)]
            dim //= 2
        self.model += [Conv2dBlock(dim, out_dim, 7, 1, 3,
                                   norm='none',
                                   activation='tanh',
                                   pad_type=pad_type)]
        self.model = nn.Sequential(*self.model)

    def forward(self, x):
        y =  self.model(x)

        return y



def G_arch(ch=64, attention='64', ksize='333333', dilation='111111'):
    arch = {}
    arch[512] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2, 1]],
                 'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1, 1]],
                 'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)],
                 'resolution': [8, 16, 32, 64, 128, 256, 512],
                 'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                               for i in range(3, 10)}}
    arch[256] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2]],
                 'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1]],
                 'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2), (2, 2)],
                 'resolution': [8, 16, 32, 64, 128, 256],
                 'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                               for i in range(3, 9)}}
    arch[128] = {'in_channels': [ch * item for item in [16, 16, 8, 4, 2]],
                 'out_channels': [ch * item for item in [16, 8, 4, 2, 1]],
                 'upsample': [(2, 2), (2, 2), (2, 2), (2, 2), (2, 2)],
                 'resolution': [8, 16, 32, 64, 128],
                 'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                               for i in range(3, 8)}}
    arch[64] = {'in_channels': [ch * item for item in [16, 16, 8, 4]],
                'out_channels': [ch * item for item in [16, 8, 4, 2]],
                'upsample': [(2, 2), (2, 2), (2, 2), (2, 2)],
                'resolution': [8, 16, 32, 64],
                'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                              for i in range(3, 7)}}

    arch[63] = {'in_channels': [ch * item for item in [16, 16, 8, 4]],
                'out_channels': [ch * item for item in [16, 8, 4, 2]],
                'upsample': [(2, 2), (2, 2), (2, 2), (2,1)],
                'resolution': [8, 16, 32, 64],
                'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                              for i in range(3, 7)},
                'kernel1': [3, 3, 3, 3],
                'kernel2': [3, 3, 1, 1]
                }

    arch[32] = {'in_channels': [ch * item for item in [4, 4, 4]],
                'out_channels': [ch * item for item in [4, 4, 4]],
                'upsample': [(2, 2), (2, 2), (2, 2)],
                'resolution': [8, 16, 32],
                'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                              for i in range(3, 6)}}

    arch[32] = {'in_channels': [ch * item for item in [4, 4, 4]],
                'out_channels': [ch * item for item in [4, 4, 4]],
                'upsample': [(2, 2), (2, 2), (2, 2)],
                'resolution': [8, 16, 32],
                'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                              for i in range(3, 6)},
                'kernel1': [3, 3, 3],
                'kernel2': [3, 3, 1]
                }

    arch[129] = {'in_channels': [ch * item for item in [16, 16, 8, 8, 4, 2, 1]],
                      'out_channels': [ch * item for item in [16, 8, 8, 4, 2, 1, 1]],
                      'upsample': [(2,2), (2,2), (2,2),  (2,2),  (2,2),  (1,2), (1,2)],
                      'resolution': [8, 16, 32, 64, 128, 256, 512],
                      'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                                    for i in range(3, 10)}}

    arch[33] = {'in_channels': [ch * item for item in [16, 16, 8, 4, 2]],
                      'out_channels': [ch * item for item in [16, 8, 4, 2, 1]],
                      'upsample': [(2,2), (2,2), (2,2),  (1,2),  (1,2)],
                      'resolution': [8, 16, 32, 64, 128],
                      'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                                    for i in range(3, 8)}}

    arch[31] = {'in_channels': [ch * item for item in [16, 16, 4, 2]],
                'out_channels': [ch * item for item in [16, 4, 2, 1]],
                'upsample': [(2,2), (2,2), (2,2), (1,2)],
                'resolution': [8, 16, 32, 64],
                'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                                    for i in range(3, 7)},
                'kernel1':[3, 3, 3, 3],
                'kernel2': [3, 1, 1, 1]}

    arch[16] = {'in_channels': [ch * item for item in [8, 4, 2]],
                'out_channels': [ch * item for item in [4, 2, 1]],
                'upsample': [(2,2), (2,2), (2,1)],
                'resolution': [8, 16, 16],
                'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                                    for i in range(3, 6)},
                'kernel1':[3, 3, 3],
                'kernel2': [3, 3, 1]}

    arch[17] = {'in_channels': [ch * item for item in [8, 4, 2]],
                'out_channels': [ch * item for item in [4, 2, 1]],
                'upsample': [(2,2), (2,2), (2,1)],
                'resolution': [8, 16, 16],
                'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                                    for i in range(3, 6)},
                'kernel1':[3, 3, 3],
                'kernel2': [3, 3, 1]}

    arch[20] = {'in_channels': [ch * item for item in [8, 4, 2]],
                'out_channels': [ch * item for item in [4, 2, 1]],
                'upsample': [(2,2), (2,2), (2,1)],
                'resolution': [8, 16, 16],
                'attention': {2 ** i: (2 ** i in [int(item) for item in attention.split('_')])
                                    for i in range(3, 6)},
                'kernel1':[3, 3, 3],
                'kernel2': [3, 1, 1]}

    return arch


class Generator(nn.Module):
    def __init__(self, G_ch=64, dim_z=128, bottom_width=4, bottom_height=4,resolution=128,
                 G_kernel_size=3, G_attn='64', n_classes=1000,
                 num_G_SVs=1, num_G_SV_itrs=1,
                 G_shared=True, shared_dim=0, no_hier=False,
                 cross_replica=False, mybn=False,
                 G_activation=nn.ReLU(inplace=False),
                 BN_eps=1e-5, SN_eps=1e-12, G_fp16=False,
                 G_init='ortho', skip_init=False,
                 G_param='SN', norm_style='bn',gpu_ids=[], bn_linear='embed', input_nc=3,
                 one_hot=False, first_layer=False, one_hot_k=1,
                 **kwargs):
        super(Generator, self).__init__()
        self.name = 'G'
        # Use class only in first layer
        self.first_layer = first_layer
        # gpu-ids
        self.gpu_ids = gpu_ids
        # Use one hot vector representation for input class
        self.one_hot = one_hot
        # Use one hot k vector representation for input class if k is larger than 0. If it's 0, simly use the class number and not a k-hot encoding.
        self.one_hot_k = one_hot_k
        # Channel width mulitplier
        self.ch = G_ch
        # Dimensionality of the latent space
        self.dim_z = dim_z
        # The initial width dimensions
        self.bottom_width = bottom_width
        # The initial height dimension
        self.bottom_height = bottom_height
        # Resolution of the output
        self.resolution = resolution
        # Kernel size?
        self.kernel_size = G_kernel_size
        # Attention?
        self.attention = G_attn
        # number of classes, for use in categorical conditional generation
        self.n_classes = n_classes
        # Use shared embeddings?
        self.G_shared = G_shared
        # Dimensionality of the shared embedding? Unused if not using G_shared
        self.shared_dim = shared_dim if shared_dim > 0 else dim_z
        # Hierarchical latent space?
        self.hier = not no_hier
        # Cross replica batchnorm?
        self.cross_replica = cross_replica
        # Use my batchnorm?
        self.mybn = mybn
        # nonlinearity for residual blocks
        self.activation = G_activation
        # Initialization style
        self.init = G_init
        # Parameterization style
        self.G_param = G_param
        # Normalization style
        self.norm_style = norm_style
        # Epsilon for BatchNorm?
        self.BN_eps = BN_eps
        # Epsilon for Spectral Norm?
        self.SN_eps = SN_eps
        # fp16?
        self.fp16 = G_fp16
        # Architecture dict
        self.arch = G_arch(self.ch, self.attention)[resolution]
        self.bn_linear = bn_linear

        #self.transformer = Transformer(d_model = 2560)
        #self.input_proj = nn.Conv2d(512, 2560, kernel_size=1)
        self.linear_q = nn.Linear(512,2048*2)

        self.DETR = build()
        self.DEC = Decoder(res_norm = 'in')
        # If using hierarchical latents, adjust z
        if self.hier:
            # Number of places z slots into
            self.num_slots = len(self.arch['in_channels']) + 1
            self.z_chunk_size = (self.dim_z // self.num_slots)
            # Recalculate latent dimensionality for even splitting into chunks
            self.dim_z = self.z_chunk_size * self.num_slots
        else:
            self.num_slots = 1
            self.z_chunk_size = 0

        # Which convs, batchnorms, and linear layers to use
        if self.G_param == 'SN':
            self.which_conv = functools.partial(layers.SNConv2d,
                                                kernel_size=3, padding=1,
                                                num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
                                                eps=self.SN_eps)
            self.which_linear = functools.partial(layers.SNLinear,
                                                  num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
                                                  eps=self.SN_eps)
        else:
            self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
            self.which_linear = nn.Linear

        # We use a non-spectral-normed embedding here regardless;
        # For some reason applying SN to G's embedding seems to randomly cripple G
        if one_hot:
            self.which_embedding = functools.partial(layers.SNLinear,
                                                         num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
                                                         eps=self.SN_eps)
        else:
            self.which_embedding = nn.Embedding

        bn_linear = (functools.partial(self.which_linear, bias=False) if self.G_shared
                     else self.which_embedding)
        if self.bn_linear=='SN':
            bn_linear = functools.partial(self.which_linear, bias=False)
        if self.G_shared:
            input_size = self.shared_dim + self.z_chunk_size
        elif self.hier:
            if self.first_layer:
                input_size = self.z_chunk_size
            else:
                input_size = self.n_classes + self.z_chunk_size
            self.which_bn = functools.partial(layers.ccbn,
                                              which_linear=bn_linear,
                                              cross_replica=self.cross_replica,
                                              mybn=self.mybn,
                                              input_size=input_size,
                                              norm_style=self.norm_style,
                                              eps=self.BN_eps)
        else:
            input_size = self.n_classes
            self.which_bn = functools.partial(layers.bn,
                                              cross_replica=self.cross_replica,
                                              mybn=self.mybn,
                                              eps=self.BN_eps)




        # Prepare model
        # If not using shared embeddings, self.shared is just a passthrough
        self.shared = (self.which_embedding(n_classes, self.shared_dim) if G_shared
                       else layers.identity())
        # First linear layer
        # The parameters for the first linear layer depend on the different input variations.
        if self.first_layer:
            if self.one_hot:
                self.linear = self.which_linear(self.dim_z // self.num_slots + self.n_classes,
                                        self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
            else:
                self.linear = self.which_linear(self.dim_z // self.num_slots + 1,
                                                self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
            if self.one_hot_k==1:
                self.linear = self.which_linear((self.dim_z // self.num_slots) * self.n_classes,
                                        self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
            if self.one_hot_k>1:
                self.linear = self.which_linear(self.dim_z // self.num_slots + self.n_classes*self.one_hot_k,
                                        self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))


        else:
            self.linear = self.which_linear(self.dim_z // self.num_slots,
                                        self.arch['in_channels'][0] * (self.bottom_width * self.bottom_height))
        # self.blocks is a doubly-nested list of modules, the outer loop intended
        # to be over blocks at a given resolution (resblocks and/or self-attention)
        # while the inner loop is over a given block
        self.blocks = []
        for index in range(len(self.arch['out_channels'])):
            if 'kernel1' in self.arch.keys():
                padd1 = 1 if self.arch['kernel1'][index]>1 else 0
                padd2 = 1 if self.arch['kernel2'][index]>1 else 0
                conv1 = functools.partial(layers.SNConv2d,
                                                kernel_size=self.arch['kernel1'][index], padding=padd1,
                                                num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
                                                eps=self.SN_eps)
                conv2 = functools.partial(layers.SNConv2d,
                                                kernel_size=self.arch['kernel2'][index], padding=padd2,
                                                num_svs=num_G_SVs, num_itrs=num_G_SV_itrs,
                                                eps=self.SN_eps)
                self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index],
                                               out_channels=self.arch['out_channels'][index],
                                               which_conv1=conv1,
                                               which_conv2=conv2,
                                               which_bn=self.which_bn,
                                               activation=self.activation,
                                               upsample=(functools.partial(F.interpolate,
                                                                           scale_factor=self.arch['upsample'][index])
                                                         if index < len(self.arch['upsample']) else None))]]
            else:
                self.blocks += [[layers.GBlock(in_channels=self.arch['in_channels'][index],
                                               out_channels=self.arch['out_channels'][index],
                                               which_conv1=self.which_conv,
                                               which_conv2=self.which_conv,
                                               which_bn=self.which_bn,
                                               activation=self.activation,
                                               upsample=(functools.partial(F.interpolate, scale_factor=self.arch['upsample'][index])
                                                         if index < len(self.arch['upsample']) else None))]]

            # If attention on this block, attach it to the end
            if self.arch['attention'][self.arch['resolution'][index]]:
                print('Adding attention layer in G at resolution %d' % self.arch['resolution'][index])
                self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index], self.which_conv)]

        # Turn self.blocks into a ModuleList so that it's all properly registered.
        self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])

        # output layer: batchnorm-relu-conv.
        # Consider using a non-spectral conv here
        self.output_layer = nn.Sequential(layers.bn(self.arch['out_channels'][-1],
                                                    cross_replica=self.cross_replica,
                                                    mybn=self.mybn),
                                          self.activation,
                                          self.which_conv(self.arch['out_channels'][-1], input_nc))

        # Initialize weights. Optionally skip init for testing.
        if not skip_init:
            self = init_weights(self, G_init)

    # Note on this forward function: we pass in a y vector which has
    # already been passed through G.shared to enable easy class-wise
    # interpolation later. If we passed in the one-hot and then ran it through
    # G.shared in this forward function, it would be harder to handle.
    def forward(self, x, y_ind, y):
        # If hierarchical, concatenate zs and ys
      
        
        h_all = self.DETR(x, y_ind)
        #h_all = torch.stack([h_all, h_all, h_all])
        
        #h_all_bs = torch.unbind(h_all[-1], 0)
        #y_bs = torch.unbind(y_ind, 0)

        #h = torch.stack([h_i[y_j] for h_i,y_j in zip(h_all_bs, y_bs)], 0)

        


        h = self.linear_q(h_all)

      
        h = h.contiguous()
        # Reshape - when y is not a single class value but rather an array of classes, the reshape is needed to create
        # a separate vertical patch for each input.
        if self.first_layer:
            # correct reshape
            h = h.view(h.size(0), h.shape[1]*2, 4, -1)
            h = h.permute(0, 3, 2, 1)

        else:
            h = h.view(h.size(0), -1, self.bottom_width, self.bottom_height)
        

        #for index, blocklist in enumerate(self.blocks):
            # Second inner loop in case block has multiple layers
         #   for block in blocklist:
        #        h = block(h, ys[index])

         #Apply batchnorm-relu-conv-tanh at output
       # h = torch.tanh(self.output_layer(h))

        h = self.DEC(h)
        return h







# Discriminator architecture, same paradigm as G's above
def D_arch(ch=64, attention='64', input_nc=3, ksize='333333', dilation='111111'):
    arch = {}
    arch[256] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
                 'downsample': [True] * 6 + [False],
                 'resolution': [128, 64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 8)}}
    arch[128] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
                 'downsample': [True] * 5 + [False],
                 'resolution': [64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 8)}}
    arch[64] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]],
                'out_channels': [item * ch for item in [1, 2, 4, 8, 16]],
                'downsample': [True] * 4 + [False],
                'resolution': [32, 16, 8, 4, 4],
                'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                              for i in range(2, 7)}}
    arch[63] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8]],
                'out_channels': [item * ch for item in [1, 2, 4, 8, 16]],
                'downsample': [True] * 4 + [False],
                'resolution': [32, 16, 8, 4, 4],
                'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                              for i in range(2, 7)}}
    arch[32] = {'in_channels': [input_nc] + [item * ch for item in [4, 4, 4]],
                'out_channels': [item * ch for item in [4, 4, 4, 4]],
                'downsample': [True, True, False, False],
                'resolution': [16, 16, 16, 16],
                'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                              for i in range(2, 6)}}
    arch[129] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 8, 16, 16]],
                 'downsample': [True] * 6 + [False],
                 'resolution': [128, 64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 8)}}
    arch[33] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
                 'downsample': [True] * 5 + [False],
                 'resolution': [64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 10)}}
    arch[31] = {'in_channels': [input_nc] + [ch * item for item in [1, 2, 4, 8, 16]],
                 'out_channels': [item * ch for item in [1, 2, 4, 8, 16, 16]],
                 'downsample': [True] * 5 + [False],
                 'resolution': [64, 32, 16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 10)}}
    arch[16] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]],
                 'out_channels': [item * ch for item in [1, 8, 16, 16]],
                 'downsample': [True] * 3 + [False],
                 'resolution': [16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 5)}}

    arch[17] = {'in_channels': [input_nc] + [ch * item for item in [1, 4]],
                 'out_channels': [item * ch for item in [1, 4, 8]],
                 'downsample': [True] * 3,
                 'resolution': [16, 8, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 5)}}


    arch[20] = {'in_channels': [input_nc] + [ch * item for item in [1, 8, 16]],
                 'out_channels': [item * ch for item in [1, 8, 16, 16]],
                 'downsample': [True] * 3 + [False],
                 'resolution': [16, 8, 4, 4],
                 'attention': {2 ** i: 2 ** i in [int(item) for item in attention.split('_')]
                               for i in range(2, 5)}}
    return arch


class Discriminator(nn.Module):

    def __init__(self, D_ch=64, D_wide=True, resolution=resolution,
                 D_kernel_size=3, D_attn='64', n_classes=VOCAB_SIZE,
                 num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
                 SN_eps=1e-8, output_dim=1, D_mixed_precision=False, D_fp16=False,
                 D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False, **kwargs):

        super(Discriminator, self).__init__()
        self.name = 'D'
        # gpu_ids
        self.gpu_ids = gpu_ids
        # one_hot representation
        self.one_hot = one_hot
        # Width multiplier
        self.ch = D_ch
        # Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
        self.D_wide = D_wide
        # Resolution
        self.resolution = resolution
        # Kernel size
        self.kernel_size = D_kernel_size
        # Attention?
        self.attention = D_attn
        # Number of classes
        self.n_classes = n_classes
        # Activation
        self.activation = D_activation
        # Initialization style
        self.init = D_init
        # Parameterization style
        self.D_param = D_param
        # Epsilon for Spectral Norm?
        self.SN_eps = SN_eps
        # Fp16?
        self.fp16 = D_fp16
        # Architecture
        self.arch = D_arch(self.ch, self.attention, input_nc)[resolution]

        # Which convs, batchnorms, and linear layers to use
        # No option to turn off SN in D right now
        if self.D_param == 'SN':
            self.which_conv = functools.partial(layers.SNConv2d,
                                                kernel_size=3, padding=1,
                                                num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                eps=self.SN_eps)
            self.which_linear = functools.partial(layers.SNLinear,
                                                  num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                  eps=self.SN_eps)
            self.which_embedding = functools.partial(layers.SNEmbedding,
                                                     num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                     eps=self.SN_eps)
            if bn_linear=='SN':
                self.which_embedding = functools.partial(layers.SNLinear,
                                                         num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                         eps=self.SN_eps)
        else:
            self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
            self.which_linear = nn.Linear
            # We use a non-spectral-normed embedding here regardless;
            # For some reason applying SN to G's embedding seems to randomly cripple G
            self.which_embedding = nn.Embedding
        if one_hot:
            self.which_embedding = functools.partial(layers.SNLinear,
                                                         num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                         eps=self.SN_eps)
        # Prepare model
        # self.blocks is a doubly-nested list of modules, the outer loop intended
        # to be over blocks at a given resolution (resblocks and/or self-attention)
        self.blocks = []
        for index in range(len(self.arch['out_channels'])):
            self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
                                           out_channels=self.arch['out_channels'][index],
                                           which_conv=self.which_conv,
                                           wide=self.D_wide,
                                           activation=self.activation,
                                           preactivation=(index > 0),
                                           downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
            # If attention on this block, attach it to the end
            if self.arch['attention'][self.arch['resolution'][index]]:
                print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
                self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
                                                     self.which_conv)]
        # Turn self.blocks into a ModuleList so that it's all properly registered.
        self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
        # Linear output layer. The output dimension is typically 1, but may be
        # larger if we're e.g. turning this into a VAE with an inference output
        self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
        # Embedding for projection discrimination
        self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])

        # Initialize weights
        if not skip_init:
            self = init_weights(self, D_init)

    def forward(self, x, y=None, **kwargs):
        # Stick x into h for cleaner for loops without flow control
        h = x
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)
        # Apply global sum pooling as in SN-GAN
        h = torch.sum(self.activation(h), [2, 3])
        # Get initial class-unconditional output
        out = self.linear(h)
        # Get projection of final featureset onto class vectors and add to evidence
        if y is not None:
            out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)
        return out

    def return_features(self, x, y=None):
        # Stick x into h for cleaner for loops without flow control
        h = x
        block_output = []
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)
                block_output.append(h)
        # Apply global sum pooling as in SN-GAN
        # h = torch.sum(self.activation(h), [2, 3])
        return block_output




class WDiscriminator(nn.Module):

    def __init__(self, D_ch=64, D_wide=True, resolution=resolution,
                 D_kernel_size=3, D_attn='64', n_classes=VOCAB_SIZE,
                 num_D_SVs=1, num_D_SV_itrs=1, D_activation=nn.ReLU(inplace=False),
                 SN_eps=1e-8, output_dim=NUM_WRITERS, D_mixed_precision=False, D_fp16=False,
                 D_init='N02', skip_init=False, D_param='SN', gpu_ids=[0],bn_linear='SN', input_nc=1, one_hot=False, **kwargs):
        super(WDiscriminator, self).__init__()
        self.name = 'D'
        # gpu_ids
        self.gpu_ids = gpu_ids
        # one_hot representation
        self.one_hot = one_hot
        # Width multiplier
        self.ch = D_ch
        # Use Wide D as in BigGAN and SA-GAN or skinny D as in SN-GAN?
        self.D_wide = D_wide
        # Resolution
        self.resolution = resolution
        # Kernel size
        self.kernel_size = D_kernel_size
        # Attention?
        self.attention = D_attn
        # Number of classes
        self.n_classes = n_classes
        # Activation
        self.activation = D_activation
        # Initialization style
        self.init = D_init
        # Parameterization style
        self.D_param = D_param
        # Epsilon for Spectral Norm?
        self.SN_eps = SN_eps
        # Fp16?
        self.fp16 = D_fp16
        # Architecture
        self.arch = D_arch(self.ch, self.attention, input_nc)[resolution]

        # Which convs, batchnorms, and linear layers to use
        # No option to turn off SN in D right now
        if self.D_param == 'SN':
            self.which_conv = functools.partial(layers.SNConv2d,
                                                kernel_size=3, padding=1,
                                                num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                eps=self.SN_eps)
            self.which_linear = functools.partial(layers.SNLinear,
                                                  num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                  eps=self.SN_eps)
            self.which_embedding = functools.partial(layers.SNEmbedding,
                                                     num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                     eps=self.SN_eps)
            if bn_linear=='SN':
                self.which_embedding = functools.partial(layers.SNLinear,
                                                         num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                         eps=self.SN_eps)
        else:
            self.which_conv = functools.partial(nn.Conv2d, kernel_size=3, padding=1)
            self.which_linear = nn.Linear
            # We use a non-spectral-normed embedding here regardless;
            # For some reason applying SN to G's embedding seems to randomly cripple G
            self.which_embedding = nn.Embedding
        if one_hot:
            self.which_embedding = functools.partial(layers.SNLinear,
                                                         num_svs=num_D_SVs, num_itrs=num_D_SV_itrs,
                                                         eps=self.SN_eps)
        # Prepare model
        # self.blocks is a doubly-nested list of modules, the outer loop intended
        # to be over blocks at a given resolution (resblocks and/or self-attention)
        self.blocks = []
        for index in range(len(self.arch['out_channels'])):
            self.blocks += [[layers.DBlock(in_channels=self.arch['in_channels'][index],
                                           out_channels=self.arch['out_channels'][index],
                                           which_conv=self.which_conv,
                                           wide=self.D_wide,
                                           activation=self.activation,
                                           preactivation=(index > 0),
                                           downsample=(nn.AvgPool2d(2) if self.arch['downsample'][index] else None))]]
            # If attention on this block, attach it to the end
            if self.arch['attention'][self.arch['resolution'][index]]:
                print('Adding attention layer in D at resolution %d' % self.arch['resolution'][index])
                self.blocks[-1] += [layers.Attention(self.arch['out_channels'][index],
                                                     self.which_conv)]
        # Turn self.blocks into a ModuleList so that it's all properly registered.
        self.blocks = nn.ModuleList([nn.ModuleList(block) for block in self.blocks])
        # Linear output layer. The output dimension is typically 1, but may be
        # larger if we're e.g. turning this into a VAE with an inference output
        self.linear = self.which_linear(self.arch['out_channels'][-1], output_dim)
        # Embedding for projection discrimination
        self.embed = self.which_embedding(self.n_classes, self.arch['out_channels'][-1])
        self.cross_entropy = nn.CrossEntropyLoss()
        # Initialize weights
        if not skip_init:
            self = init_weights(self, D_init)

    def forward(self, x, y=None, **kwargs):
        # Stick x into h for cleaner for loops without flow control
        h = x
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)
        # Apply global sum pooling as in SN-GAN
        h = torch.sum(self.activation(h), [2, 3])
        # Get initial class-unconditional output
        out = self.linear(h)
        # Get projection of final featureset onto class vectors and add to evidence
        #if y is not None:
        #out = out + torch.sum(self.embed(y) * h, 1, keepdim=True)

        loss = self.cross_entropy(out, y.long())

        return loss

    def return_features(self, x, y=None):
        # Stick x into h for cleaner for loops without flow control
        h = x
        block_output = []
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)
                block_output.append(h)
        # Apply global sum pooling as in SN-GAN
        # h = torch.sum(self.activation(h), [2, 3])
        return block_output
        
class Encoder(Discriminator):
    def __init__(self, opt, output_dim, **kwargs):
        super(Encoder, self).__init__(**vars(opt))
        self.output_layer = nn.Sequential(self.activation,
                                          nn.Conv2d(self.arch['out_channels'][-1], output_dim, kernel_size=(4,2), padding=0, stride=2))

    def forward(self, x):
        # Stick x into h for cleaner for loops without flow control
        h = x
        # Loop over blocks
        for index, blocklist in enumerate(self.blocks):
            for block in blocklist:
                h = block(h)
        out = self.output_layer(h)
        return out

class BiDiscriminator(nn.Module):
    def __init__(self, opt):
        super(BiDiscriminator, self).__init__()
        self.infer_img = Encoder(opt, output_dim=opt.nimg_features)
        # self.infer_z = nn.Sequential(
        #     nn.Conv2d(opt.dim_z, 512, 1, stride=1, bias=False),
        #     nn.LeakyReLU(inplace=True),
        #     nn.Dropout2d(p=self.dropout),
        #     nn.Conv2d(512, opt.nz_features, 1, stride=1, bias=False),
        #     nn.LeakyReLU(inplace=True),
        #     nn.Dropout2d(p=self.dropout)
        # )
        self.infer_joint = nn.Sequential(
            nn.Conv2d(opt.dim_z+opt.nimg_features, 1024, 1, stride=1, bias=True),
            nn.ReLU(inplace=True),

            nn.Conv2d(1024, 1024, 1, stride=1, bias=True),
            nn.ReLU(inplace=True)
        )
        self.final = nn.Conv2d(1024, 1, 1, stride=1, bias=True)

    def forward(self, x, z, **kwargs):
        output_x = self.infer_img(x)
        # output_z = self.infer_z(z)
        if len(z.shape)==2:
            z = z.unsqueeze(2).unsqueeze(2).repeat((1,1,1,output_x.shape[3]))
        output_features = self.infer_joint(torch.cat([output_x, z], dim=1))
        output = self.final(output_features)
        return output

# Parallelized G_D to minimize cross-gpu communication
# Without this, Generator outputs would get all-gathered and then rebroadcast.
class G_D(nn.Module):
    def __init__(self, G, D):
        super(G_D, self).__init__()
        self.G = G
        self.D = D

    def forward(self, z, gy, x=None, dy=None, train_G=False, return_G_z=False,
                split_D=False):
        # If training G, enable grad tape
        with torch.set_grad_enabled(train_G):
            # Get Generator output given noise
            G_z = self.G(z, self.G.shared(gy))
            # Cast as necessary
            if self.G.fp16 and not self.D.fp16:
                G_z = G_z.float()
            if self.D.fp16 and not self.G.fp16:
                G_z = G_z.half()
        # Split_D means to run D once with real data and once with fake,
        # rather than concatenating along the batch dimension.
        if split_D:
            D_fake = self.D(G_z, gy)
            if x is not None:
                D_real = self.D(x, dy)
                return D_fake, D_real
            else:
                if return_G_z:
                    return D_fake, G_z
                else:
                    return D_fake
        # If real data is provided, concatenate it with the Generator's output
        # along the batch dimension for improved efficiency.
        else:
            D_input = torch.cat([G_z, x], 0) if x is not None else G_z
            D_class = torch.cat([gy, dy], 0) if dy is not None else gy
            # Get Discriminator output
            D_out = self.D(D_input, D_class)
            if x is not None:
                return torch.split(D_out, [G_z.shape[0], x.shape[0]])  # D_fake, D_real
            else:
                if return_G_z:
                    return D_out, G_z
                else:
                    return D_out