File size: 11,254 Bytes
9acea67
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
"""This module contains simple helper functions """
from __future__ import print_function
import torch
import numpy as np
from PIL import Image
import os
import torch.nn.functional as F
from torch.autograd import Variable

def random_word(len_word, alphabet):
    # generate a word constructed from len_word characters where each character is randomly chosen from the alphabet.
    char = np.random.randint(low=0, high=len(alphabet), size=len_word)
    word = [alphabet[c] for c in char]
    return ''.join(word)

def load_network(net, save_dir, epoch):
    """Load all the networks from the disk.

    Parameters:
        epoch (int) -- current epoch; used in the file name '%s_net_%s.pth' % (epoch, name)
    """
    load_filename = '%s_net_%s.pth' % (epoch, net.name)
    load_path = os.path.join(save_dir, load_filename)
    # if you are using PyTorch newer than 0.4 (e.g., built from
    # GitHub source), you can remove str() on self.device
    state_dict = torch.load(load_path)
    if hasattr(state_dict, '_metadata'):
        del state_dict._metadata
    net.load_state_dict(state_dict)
    return net

def writeCache(env, cache):
    with env.begin(write=True) as txn:
        for k, v in cache.items():
            if type(k) == str:
                k = k.encode()
            if type(v) == str:
                v = v.encode()
            txn.put(k, v)

def loadData(v, data):
    with torch.no_grad():
        v.resize_(data.size()).copy_(data)

def multiple_replace(string, rep_dict):
    for key in rep_dict.keys():
        string = string.replace(key, rep_dict[key])
    return string

def get_curr_data(data, batch_size, counter):
    curr_data = {}
    for key in data:
        curr_data[key] = data[key][batch_size*counter:batch_size*(counter+1)]
    return curr_data

# Utility file to seed rngs
def seed_rng(seed):
  torch.manual_seed(seed)
  torch.cuda.manual_seed(seed)
  np.random.seed(seed)

# turn tensor of classes to tensor of one hot tensors:
def make_one_hot(labels, len_labels, n_classes):
    one_hot = torch.zeros((labels.shape[0], labels.shape[1], n_classes),dtype=torch.float32)
    for i in range(len(labels)):
        one_hot[i,np.array(range(len_labels[i])), labels[i,:len_labels[i]]-1]=1
    return one_hot

# Hinge Loss
def loss_hinge_dis(dis_fake, dis_real, len_text_fake, len_text, mask_loss):
    mask_real = torch.ones(dis_real.shape).to(dis_real.device)
    mask_fake = torch.ones(dis_fake.shape).to(dis_fake.device)
    if mask_loss and len(dis_fake.shape)>2:
        for i in range(len(len_text)):
            mask_real[i, :, :, len_text[i]:] = 0
            mask_fake[i, :, :, len_text_fake[i]:] = 0
    loss_real = torch.sum(F.relu(1. - dis_real * mask_real))/torch.sum(mask_real)
    loss_fake = torch.sum(F.relu(1. + dis_fake * mask_fake))/torch.sum(mask_fake)
    return loss_real, loss_fake


def loss_hinge_gen(dis_fake, len_text_fake, mask_loss):
    mask_fake = torch.ones(dis_fake.shape).to(dis_fake.device)
    if mask_loss and len(dis_fake.shape)>2:
        for i in range(len(len_text_fake)):
            mask_fake[i, :, :, len_text_fake[i]:] = 0
    loss = -torch.sum(dis_fake*mask_fake)/torch.sum(mask_fake)
    return loss

def loss_std(z, lengths, mask_loss):
    loss_std = torch.zeros(1).to(z.device)
    z_mean = torch.ones((z.shape[0], z.shape[1])).to(z.device)
    for i in range(len(lengths)):
        if mask_loss:
            if lengths[i]>1:
                loss_std += torch.mean(torch.std(z[i, :, :, :lengths[i]], 2))
                z_mean[i,:] = torch.mean(z[i, :, :, :lengths[i]], 2).squeeze(1)
            else:
                z_mean[i, :] = z[i, :, :, 0].squeeze(1)
        else:
            loss_std += torch.mean(torch.std(z[i, :, :, :], 2))
            z_mean[i,:] = torch.mean(z[i, :, :, :], 2).squeeze(1)
    loss_std = loss_std/z.shape[0]
    return loss_std, z_mean

# Convenience utility to switch off requires_grad
def toggle_grad(model, on_or_off):
  for param in model.parameters():
    param.requires_grad = on_or_off


# Apply modified ortho reg to a model
# This function is an optimized version that directly computes the gradient,
# instead of computing and then differentiating the loss.
def ortho(model, strength=1e-4, blacklist=[]):
  with torch.no_grad():
    for param in model.parameters():
      # Only apply this to parameters with at least 2 axes, and not in the blacklist
      if len(param.shape) < 2 or any([param is item for item in blacklist]):
        continue
      w = param.view(param.shape[0], -1)
      grad = (2 * torch.mm(torch.mm(w, w.t())
              * (1. - torch.eye(w.shape[0], device=w.device)), w))
      param.grad.data += strength * grad.view(param.shape)


# Default ortho reg
# This function is an optimized version that directly computes the gradient,
# instead of computing and then differentiating the loss.
def default_ortho(model, strength=1e-4, blacklist=[]):
  with torch.no_grad():
    for param in model.parameters():
      # Only apply this to parameters with at least 2 axes & not in blacklist
      if len(param.shape) < 2 or param in blacklist:
        continue
      w = param.view(param.shape[0], -1)
      grad = (2 * torch.mm(torch.mm(w, w.t())
               - torch.eye(w.shape[0], device=w.device), w))
      param.grad.data += strength * grad.view(param.shape)


# Convenience utility to switch off requires_grad
def toggle_grad(model, on_or_off):
  for param in model.parameters():
    param.requires_grad = on_or_off


# A highly simplified convenience class for sampling from distributions
# One could also use PyTorch's inbuilt distributions package.
# Note that this class requires initialization to proceed as
# x = Distribution(torch.randn(size))
# x.init_distribution(dist_type, **dist_kwargs)
# x = x.to(device,dtype)
# This is partially based on https://discuss.pytorch.org/t/subclassing-torch-tensor/23754/2
class Distribution(torch.Tensor):
    # Init the params of the distribution
    def init_distribution(self, dist_type, **kwargs):
        seed_rng(kwargs['seed'])
        self.dist_type = dist_type
        self.dist_kwargs = kwargs
        if self.dist_type == 'normal':
            self.mean, self.var = kwargs['mean'], kwargs['var']
        elif self.dist_type == 'categorical':
            self.num_categories = kwargs['num_categories']
        elif self.dist_type == 'poisson':
            self.lam = kwargs['var']
        elif self.dist_type == 'gamma':
            self.scale = kwargs['var']


    def sample_(self):
        if self.dist_type == 'normal':
            self.normal_(self.mean, self.var)
        elif self.dist_type == 'categorical':
            self.random_(0, self.num_categories)
        elif self.dist_type == 'poisson':
            type = self.type()
            device = self.device
            data = np.random.poisson(self.lam, self.size())
            self.data = torch.from_numpy(data).type(type).to(device)
        elif self.dist_type == 'gamma':
            type = self.type()
            device = self.device
            data = np.random.gamma(shape=1, scale=self.scale, size=self.size())
            self.data = torch.from_numpy(data).type(type).to(device)
            # return self.variable

    # Silly hack: overwrite the to() method to wrap the new object
    # in a distribution as well
    def to(self, *args, **kwargs):
        new_obj = Distribution(self)
        new_obj.init_distribution(self.dist_type, **self.dist_kwargs)
        new_obj.data = super().to(*args, **kwargs)
        return new_obj


def to_device(net, gpu_ids):
    if len(gpu_ids) > 0:
        assert(torch.cuda.is_available())
        net.to(gpu_ids[0])
        # net = torch.nn.DataParallel(net, gpu_ids)  # multi-GPUs
        if len(gpu_ids)>1:
            net = torch.nn.DataParallel(net, device_ids=gpu_ids).cuda()
            # net = torch.nn.DistributedDataParallel(net)
    return net


# Convenience function to prepare a z and y vector
def prepare_z_y(G_batch_size, dim_z, nclasses, device='cuda',
                fp16=False, z_var=1.0, z_dist='normal', seed=0):
    z_ = Distribution(torch.randn(G_batch_size, dim_z, requires_grad=False))
    z_.init_distribution(z_dist, mean=0, var=z_var, seed=seed)
    z_ = z_.to(device, torch.float16 if fp16 else torch.float32)

    if fp16:
        z_ = z_.half()

    y_ = Distribution(torch.zeros(G_batch_size, requires_grad=False))
    y_.init_distribution('categorical', num_categories=nclasses, seed=seed)
    y_ = y_.to(device, torch.int64)
    return z_, y_


def tensor2im(input_image, imtype=np.uint8):
    """"Converts a Tensor array into a numpy image array.

    Parameters:
        input_image (tensor) --  the input image tensor array
        imtype (type)        --  the desired type of the converted numpy array
    """
    if not isinstance(input_image, np.ndarray):
        if isinstance(input_image, torch.Tensor):  # get the data from a variable
            image_tensor = input_image.data
        else:
            return input_image
        image_numpy = image_tensor[0].cpu().float().numpy()  # convert it into a numpy array
        if image_numpy.shape[0] == 1:  # grayscale to RGB
            image_numpy = np.tile(image_numpy, (3, 1, 1))
        image_numpy = (np.transpose(image_numpy, (1, 2, 0)) + 1) / 2.0 * 255.0  # post-processing: tranpose and scaling
    else:  # if it is a numpy array, do nothing
        image_numpy = input_image
    return image_numpy.astype(imtype)


def diagnose_network(net, name='network'):
    """Calculate and print the mean of average absolute(gradients)

    Parameters:
        net (torch network) -- Torch network
        name (str) -- the name of the network
    """
    mean = 0.0
    count = 0
    for param in net.parameters():
        if param.grad is not None:
            mean += torch.mean(torch.abs(param.grad.data))
            count += 1
    if count > 0:
        mean = mean / count
    print(name)
    print(mean)


def save_image(image_numpy, image_path):
    """Save a numpy image to the disk

    Parameters:
        image_numpy (numpy array) -- input numpy array
        image_path (str)          -- the path of the image
    """
    image_pil = Image.fromarray(image_numpy)
    image_pil.save(image_path)


def print_numpy(x, val=True, shp=False):
    """Print the mean, min, max, median, std, and size of a numpy array

    Parameters:
        val (bool) -- if print the values of the numpy array
        shp (bool) -- if print the shape of the numpy array
    """
    x = x.astype(np.float64)
    if shp:
        print('shape,', x.shape)
    if val:
        x = x.flatten()
        print('mean = %3.3f, min = %3.3f, max = %3.3f, median = %3.3f, std=%3.3f' % (
            np.mean(x), np.min(x), np.max(x), np.median(x), np.std(x)))


def mkdirs(paths):
    """create empty directories if they don't exist

    Parameters:
        paths (str list) -- a list of directory paths
    """
    if isinstance(paths, list) and not isinstance(paths, str):
        for path in paths:
            mkdir(path)
    else:
        mkdir(paths)


def mkdir(path):
    """create a single empty directory if it didn't exist

    Parameters:
        path (str) -- a single directory path
    """
    if not os.path.exists(path):
        os.makedirs(path)