Spaces:
Running
Running
from typing import get_args | |
import cv2 | |
import numpy as np | |
import streamlit as st | |
from PIL import Image | |
from open_image_models import LicensePlateDetector | |
from open_image_models.detection.core.hub import PlateDetectorModel | |
# Define the available models | |
detection_models = get_args(PlateDetectorModel) | |
# Streamlit interface | |
st.title("π¦ Open Image Models: Pre-trained Models for Object Detection") | |
st.write("Leverage fast and efficient pre-trained ONNX models for various object detection tasks, starting with license plate detection.") | |
st.markdown("---") | |
# Model selection dropdown (specific to license plate detection in this example) | |
selected_model = st.selectbox("π Select a License Plate Detection Model", detection_models) | |
# File uploader for images | |
uploaded_file = st.file_uploader("π Upload an image...", type=["jpg", "png", "jpeg", "webp"]) | |
if uploaded_file is not None: | |
# Load the image using PIL | |
image = Image.open(uploaded_file) | |
st.image(image, caption='Uploaded Image', use_column_width=True) | |
st.write("") | |
st.write("π **Detecting license plates...**") | |
# Convert the PIL image to an OpenCV format (NumPy array) | |
image_np = np.array(image) | |
image_cv2 = cv2.cvtColor(image_np, cv2.COLOR_RGB2BGR) | |
# Initialize the License Plate Detector | |
lp_detector = LicensePlateDetector(detection_model=selected_model) | |
# Perform license plate detection | |
detections = lp_detector.predict(image_cv2) | |
# Streamlit display for detections | |
if detections: | |
st.success(f"β {len(detections)} License Plates Detected!") | |
# Use an expander to show details in a more organized way | |
with st.expander("See detected plates details"): | |
for i, detection in enumerate(detections): | |
# Access attributes of the DetectionResult class | |
bbox = detection.bounding_box | |
st.markdown(f""" | |
**Plate {i+1}:** | |
- **Label:** {detection.label} | |
- **Confidence:** {detection.confidence:.2f} | |
- **Bounding Box:** (x1: {bbox.x1}, y1: {bbox.y1}, x2: {bbox.x2}, y2: {bbox.y2}) | |
""") | |
else: | |
st.warning("β οΈ No license plates detected!") | |
# Annotate and display the image with detected plates | |
annotated_image = lp_detector.display_predictions(image_cv2) | |
# Convert the annotated image from BGR to RGB for Streamlit display | |
annotated_image_rgb = cv2.cvtColor(annotated_image, cv2.COLOR_BGR2RGB) | |
st.image(annotated_image_rgb, caption='Annotated Image with Detections', use_column_width=True) | |
# Add some additional style or layout to make the app more attractive | |
st.markdown(""" | |
<style> | |
.stButton>button { | |
font-size: 16px; | |
background-color: #4CAF50; | |
color: white; | |
border-radius: 8px; | |
} | |
.stImage img { | |
border-radius: 10px; | |
padding: 10px; | |
} | |
</style> | |
""", unsafe_allow_html=True) | |