import gradio as gr | |
import numpy as np | |
import cv2 | |
from model import classify_image | |
def main(img): | |
img = cv2.resize(img, (224,224)) | |
img = img/255.0 | |
img = np.expand_dims(img, axis=0) | |
label, accuracy = classify_image(img) | |
print(label) | |
out = {label: accuracy} | |
return out | |
demo = gr.Interface(fn=main, | |
inputs=gr.Image(), | |
outputs=gr.Label(num_top_classes=1), allow_flagging='never') | |
if __name__ == "__main__": | |
demo.launch(share=True) |