Spaces:
Sleeping
Sleeping
anindya-hf-2002
commited on
Commit
•
7f5db1f
1
Parent(s):
2a70d27
delete dataset.py
Browse files- src/dataset.py +0 -65
src/dataset.py
DELETED
@@ -1,65 +0,0 @@
|
|
1 |
-
from PIL import Image
|
2 |
-
from torch.utils.data import Dataset
|
3 |
-
from torchvision import transforms
|
4 |
-
import os
|
5 |
-
|
6 |
-
class ClassifierDataset(Dataset):
|
7 |
-
def __init__(self, root_dir, transform=None):
|
8 |
-
self.root_dir = root_dir
|
9 |
-
self.transform = transform
|
10 |
-
|
11 |
-
self.classes = ['0', '1']
|
12 |
-
self.class_to_idx = {cls: idx for idx, cls in enumerate(self.classes)}
|
13 |
-
|
14 |
-
self.samples = self._make_dataset()
|
15 |
-
|
16 |
-
def _make_dataset(self):
|
17 |
-
samples = []
|
18 |
-
for class_name in self.classes:
|
19 |
-
class_dir = os.path.join(self.root_dir, class_name)
|
20 |
-
for img_name in os.listdir(class_dir):
|
21 |
-
img_path = os.path.join(class_dir, img_name)
|
22 |
-
samples.append((img_path, self.class_to_idx[class_name]))
|
23 |
-
return samples
|
24 |
-
|
25 |
-
def __len__(self):
|
26 |
-
return len(self.samples)
|
27 |
-
|
28 |
-
def __getitem__(self, idx):
|
29 |
-
img_path, label = self.samples[idx]
|
30 |
-
img = Image.open(img_path).convert('L') # Convert to grayscale
|
31 |
-
if self.transform:
|
32 |
-
img = self.transform(img)
|
33 |
-
return img, label
|
34 |
-
|
35 |
-
|
36 |
-
|
37 |
-
class CustomDataset(Dataset):
|
38 |
-
def __init__(self, root_dir, train_N, train_P, img_res):
|
39 |
-
self.root_dir = root_dir
|
40 |
-
self.train_N = train_N
|
41 |
-
self.train_P = train_P
|
42 |
-
self.img_res = img_res
|
43 |
-
self.transforms = transforms.Compose([
|
44 |
-
transforms.Resize(img_res),
|
45 |
-
transforms.ToTensor(),
|
46 |
-
transforms.Normalize(mean=[0.5], std=[0.5]) # Assuming grayscale images
|
47 |
-
])
|
48 |
-
|
49 |
-
def __len__(self):
|
50 |
-
return min(len(os.listdir(os.path.join(self.root_dir, self.train_N))),
|
51 |
-
len(os.listdir(os.path.join(self.root_dir, self.train_P))))
|
52 |
-
|
53 |
-
def __getitem__(self, idx):
|
54 |
-
normal_path = os.path.join(self.root_dir, self.train_N, os.listdir(os.path.join(self.root_dir, self.train_N))[idx])
|
55 |
-
pneumo_path = os.path.join(self.root_dir, self.train_P, os.listdir(os.path.join(self.root_dir, self.train_P))[idx])
|
56 |
-
|
57 |
-
normal_img = Image.open(normal_path).convert("L") # Load as grayscale
|
58 |
-
pneumo_img = Image.open(pneumo_path).convert("L") # Load as grayscale
|
59 |
-
|
60 |
-
normal_img = self.transforms(normal_img)
|
61 |
-
pneumo_img = self.transforms(pneumo_img)
|
62 |
-
|
63 |
-
return normal_img, pneumo_img
|
64 |
-
|
65 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|