Spaces:
Sleeping
Sleeping
File size: 16,457 Bytes
65eeb0e |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 |
import torch
import torch.nn as nn
import lightning as pl
import wandb
import itertools
from torch.optim.lr_scheduler import LambdaLR
from torch.utils.data import DataLoader
import numpy as np
import matplotlib.pyplot as plt
from src.classifier import Classifier
from src.dataset import CustomDataset
class AttentionGate(nn.Module):
def __init__(self, in_channels, out_channels):
super(AttentionGate, self).__init__()
self.conv_gate = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.conv_x = nn.Conv2d(in_channels, out_channels, kernel_size=1, stride=1, padding=0)
self.softmax = nn.Softmax(dim=1)
def forward(self, x, g):
gate = self.conv_gate(g)
x = self.conv_x(x)
attention = self.softmax(gate)
x_att = x * attention
return x_att
class ResUNetGenerator(nn.Module):
def __init__(self, gf, channels):
super(ResUNetGenerator, self).__init__()
# self.img_shape = img_shape
self.channels = channels
# Downsampling layers
self.conv1 = nn.Sequential(
nn.Conv2d(channels, gf, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.GroupNorm(num_groups=1, num_channels=gf)
)
self.conv2 = nn.Sequential(
nn.Conv2d(gf, gf * 2, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.GroupNorm(num_groups=1, num_channels=gf * 2)
)
self.conv3 = nn.Sequential(
nn.Conv2d(gf * 2, gf * 4, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.GroupNorm(num_groups=1, num_channels=gf * 4)
)
self.conv4 = nn.Sequential(
nn.Conv2d(gf * 4, gf * 8, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2, inplace=True),
nn.GroupNorm(num_groups=1, num_channels=gf * 8)
)
self.attn_layer = nn.ModuleList([
AttentionGate(gf * 2**(i), gf * 2**(i+1))
for i in range(3)
])
# Upsampling layers
self.deconv1 = nn.Sequential(
nn.ConvTranspose2d(gf * 8, gf * 4, kernel_size=4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.GroupNorm(num_groups=1, num_channels=gf * 4)
)
self.deconv2 = nn.Sequential(
nn.ConvTranspose2d(gf * 8, gf * 2, kernel_size=4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.GroupNorm(num_groups=1, num_channels=gf * 2)
)
self.deconv3 = nn.Sequential(
nn.ConvTranspose2d(gf * 4, gf, kernel_size=4, stride=2, padding=1),
nn.ReLU(inplace=True),
nn.GroupNorm(num_groups=1, num_channels=gf)
)
self.deconv4 = nn.Sequential(
nn.ConvTranspose2d(gf * 2, channels, kernel_size=4, stride=2, padding=1),
nn.Tanh()
)
def forward(self, x):
# Downsampling
d1 = self.conv1(x)
d2 = self.conv2(d1)
d3 = self.conv3(d2)
d4 = self.conv4(d3)
# Upsampling
u1 = self.deconv1(d4)
u1 = self.attn_layer[2](d3, u1)
u2 = self.deconv2(u1)
u2 = self.attn_layer[1](d2, u2)
u3 = self.deconv3(u2)
u3 = self.attn_layer[0](d1, u3)
output = self.deconv4(u3)
return output
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.0002, betas=(0.5, 0.999))
return optimizer
class Discriminator(pl.LightningModule):
def __init__(self, df):
super(Discriminator, self).__init__()
self.df = df
# Define the layers for the discriminator
self.conv_layers = nn.ModuleList([nn.Sequential(
nn.Conv2d(1 if i == 0 else df * 2**(i-1), df * 2**i, kernel_size=4, stride=2, padding=1),
nn.LeakyReLU(0.2),
nn.GroupNorm(8, df * 2**i)) for i in range(4)])
self.final_conv = nn.Conv2d(df * 8, 1, kernel_size=4, stride=1, padding=1)
def forward(self, x):
out = x
for conv_layer in self.conv_layers:
out = conv_layer(out)
validity = self.final_conv(out)
return validity
def configure_optimizers(self):
optimizer = torch.optim.Adam(self.parameters(), lr=0.0002, betas=(0.5, 0.999))
return optimizer
class CycleGAN(pl.LightningModule):
def __init__(self, train_dir, val_dir, test_dataloader, classifier_path, checkpoint_dir, image_size=512, batch_size=4, channels=1, gf=32, df=64, lambda_cycle=10.0, lambda_id=0.1, classifier_weight=1):
super(CycleGAN, self).__init__()
self.image_size = image_size
self.batch_size = batch_size
self.channels = channels
self.gf = gf
self.df = df
self.lambda_cycle = lambda_cycle
self.lambda_id = lambda_id * lambda_cycle
self.classifier_path = classifier_path
self.classifier_weight = classifier_weight
self.lowest_val_loss = float('inf')
self.validation_step_outputs = []
self.train_dir = train_dir
self.val_dir = val_dir
self.test_dataloader = test_dataloader
self.checkpoint_dir = checkpoint_dir
# Initialize the generator, discriminator, and classifier models
self.g_NP = ResUNetGenerator(gf, channels=self.channels)
self.g_PN = ResUNetGenerator(gf, channels=self.channels)
self.d_N = Discriminator(df)
self.d_P = Discriminator(df)
self.automatic_optimization = False
self.classifier = Classifier()
checkpoint = torch.load(classifier_path)
self.classifier.load_state_dict(checkpoint['state_dict'])
self.classifier.eval()
self.freeze_classifier()
def freeze_classifier(self):
print("freezing Classifier...")
for p in self.classifier.parameters() :
p.requires_grad = False
def generator_training_step(self, img_N, img_P, opt):
self.toggle_optimizer(opt)
# Translate images to the other domain
fake_P = self.g_NP(img_N)
fake_N = self.g_PN(img_P)
# Translate images back to original domain
reconstr_N = self.g_PN(fake_P)
reconstr_P = self.g_NP(fake_N)
# Identity mapping of images
img_N_id = self.g_PN(img_N)
img_P_id = self.g_NP(img_P)
# Discriminators determine validity of translated images
valid_N = self.d_N(fake_N)
valid_P = self.d_P(fake_P)
class_N_loss = self.classifier(fake_N)
class_P_loss = self.classifier(fake_P)
# Adversarial loss
valid_target = torch.ones_like(valid_N)
adversarial_loss = nn.MSELoss()(valid_N, valid_target) + nn.MSELoss()(valid_P, valid_target)
# Cycle consistency loss
cycle_loss = nn.L1Loss()(reconstr_N, img_N) + nn.L1Loss()(reconstr_P, img_P)
# Identity loss
identity_loss = nn.L1Loss()(img_N_id, img_N) + nn.L1Loss()(img_P_id, img_P)
# Classifier loss
class_loss = nn.MSELoss()(class_N_loss, torch.ones_like(class_N_loss)) + nn.MSELoss()(class_P_loss, torch.zeros_like(class_P_loss))
# Total generator loss
total_loss = adversarial_loss + self.lambda_cycle * cycle_loss + self.lambda_id * identity_loss + self.classifier_weight * class_loss
self.log('adversarial_loss', adversarial_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log('reconstruction_loss', cycle_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log('identity_loss', identity_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log('class_loss', class_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log('generator_loss', total_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
opt.zero_grad()
self.manual_backward(total_loss)
opt.step()
self.untoggle_optimizer(opt)
return total_loss, adversarial_loss, cycle_loss
def discriminator_training_step(self, img_N, img_P, opt):
# Pass real images through discriminator D_N
self.toggle_optimizer(opt)
pred_real_N = self.d_N(img_N)
mse_real_N = nn.MSELoss()(pred_real_N, torch.ones_like(pred_real_N))
fake_P = self.g_PN(img_P)
pred_fake_N = self.d_N(fake_P)
mse_fake_N = nn.MSELoss()(pred_fake_N, torch.zeros_like(pred_fake_N))
pred_real_P = self.d_P(img_P)
mse_real_P = nn.MSELoss()(pred_real_P, torch.ones_like(pred_real_P))
fake_N = self.g_NP(img_N)
pred_fake_P = self.d_P(fake_N)
mse_fake_P = nn.MSELoss()(pred_fake_P, torch.zeros_like(pred_fake_P))
# Compute total discriminator loss
dis_loss = 0.5 * (mse_real_N + mse_fake_N + mse_real_P + mse_fake_P)
opt.zero_grad()
self.manual_backward(mse_fake_P)
opt.step()
self.untoggle_optimizer(opt)
self.log('mse_fake_N', mse_fake_N, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log('mse_fake_P', mse_fake_P, on_step=True, on_epoch=True, prog_bar=True, logger=True)
self.log('discriminator_loss', dis_loss, on_step=True, on_epoch=True, prog_bar=True, logger=True)
return dis_loss, mse_fake_N, mse_fake_P
def training_step(self, batch, batch_idx):
img_N, img_P = batch
optD, optG = self.optimizers()
total_loss, adversarial_loss, cycle_loss = self.generator_training_step(img_N, img_P, optG)
dis_loss, mse_fake_N, mse_fake_P = self.discriminator_training_step(img_N, img_P, optD)
return {"generator_loss": total_loss, "adversarial_loss": adversarial_loss, "reconstruction_loss": cycle_loss, "discriminator_loss": dis_loss, "mse_fake_N": mse_fake_N, "mse_fake_P": mse_fake_P}
def validation_step(self, batch, batch_idx):
img_N, img_P = batch
# Translate images to the other domain
fake_P = self.g_NP(img_N)
fake_N = self.g_PN(img_P)
# Translate images back to original domain
reconstr_N = self.g_PN(fake_P)
reconstr_P = self.g_NP(fake_N)
# Identity mapping of images
img_N_id = self.g_PN(img_N)
img_P_id = self.g_NP(img_P)
# Discriminators determine validity of translated images
valid_N = self.d_N(fake_N)
valid_P = self.d_P(fake_P)
class_N_loss = self.classifier(fake_N)
class_P_loss = self.classifier(fake_P)
# Adversarial loss
valid_target = torch.ones_like(valid_N)
adversarial_loss = nn.MSELoss()(valid_N, valid_target) + nn.MSELoss()(valid_P, valid_target)
# Cycle consistency loss
cycle_loss = nn.L1Loss()(reconstr_N, img_N) + nn.L1Loss()(reconstr_P, img_P)
# Identity loss
identity_loss = nn.L1Loss()(img_N_id, img_N) + nn.L1Loss()(img_P_id, img_P)
# Classifier loss
class_loss = nn.MSELoss()(class_N_loss, torch.ones_like(class_N_loss)) + nn.MSELoss()(class_P_loss, torch.zeros_like(class_P_loss))
# Total generator loss
total_loss = adversarial_loss + self.lambda_cycle * cycle_loss + self.lambda_id * identity_loss + self.classifier_weight * class_loss
self.validation_step_outputs.append(total_loss)
self.log('val_adversarial_loss', adversarial_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log('val_cycle_loss', cycle_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log('val_identity_loss', identity_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log('val_class_loss', class_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
self.log('val_generator_loss', total_loss, on_step=False, on_epoch=True, prog_bar=True, logger=True)
return total_loss
def on_validation_end(self):
# Calculate average validation loss
avg_val_loss = torch.stack(self.validation_step_outputs).mean()
# Check if current validation loss is lower than the lowest recorded validation loss
if avg_val_loss < self.lowest_val_loss:
# Update lowest validation loss and corresponding epoch
self.lowest_val_loss = avg_val_loss
# Save the generators' state dictionaries
torch.save(self.g_NP.state_dict(), f"{self.checkpoint_dir}/g_NP_best.ckpt")
torch.save(self.g_PN.state_dict(), f"{self.checkpoint_dir}/g_PN_best.ckpt")
print(f"Model saved! loss reduced to {self.lowest_val_loss}")
def configure_optimizers(self):
optG = torch.optim.Adam(itertools.chain(self.g_NP.parameters(), self.g_PN.parameters()),lr=2e-4, betas=(0.5, 0.999))
optD = torch.optim.Adam(itertools.chain(self.d_N.parameters(), self.d_P.parameters()),lr=2e-4, betas=(0.5, 0.999))
gamma = lambda epoch: 1 - max(0, epoch + 1 - 100) / 101
schD = LambdaLR(optD, lr_lambda=gamma)
# Optimizer= [optD, optG]
return optD, optG
def train_dataloader(self):
root_dir = self.train_dir
train_N = "0"
train_P = "1"
img_res = (self.image_size, self.image_size)
dataset = CustomDataset(root_dir=root_dir, train_N=train_N, train_P=train_P, img_res=img_res)
# Set up DataLoader for parallel processing and GPU acceleration
dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=True, num_workers=4, pin_memory=True)
return dataloader
def val_dataloader(self):
root_dir = self.val_dir
train_N = "0"
train_P = "1"
img_res = (self.image_size, self.image_size)
dataset = CustomDataset(root_dir=root_dir, train_N=train_N, train_P=train_P, img_res=img_res)
# Set up DataLoader for parallel processing and GPU acceleration
dataloader = DataLoader(dataset, batch_size=self.batch_size, shuffle=False, num_workers=4, pin_memory=True)
return dataloader
def on_train_batch_end(self, outputs, batch, batch_idx):
if batch_idx % 100 == 0:
# Get a random batch from the test dataloader
batch = next(iter(self.test_dataloader))
img_N, img_P = batch
# Pick a random image from the batch
idx = np.random.randint(img_N.size(0))
img_N = img_N[idx].unsqueeze(0).to('cuda')
img_P = img_P[idx].unsqueeze(0).to('cuda')
# Translate images to the other domain
fake_P = self.g_NP(img_N)
fake_N = self.g_PN(img_P)
# Translate images back to original domain
reconstr_N = self.g_PN(fake_P)
reconstr_P = self.g_NP(fake_N)
# Plot the images
fig, axes = plt.subplots(2, 3, figsize=(15, 10))
# Plot real N, translated P, and reconstructed N
axes[0, 0].imshow(img_N.squeeze(0).permute(1, 2, 0).cpu().detach().numpy(), cmap='gray')
axes[0, 0].set_title("Real N")
axes[0, 0].axis('off')
axes[0, 1].imshow(fake_P.squeeze(0).permute(1, 2, 0).cpu().detach().numpy(), cmap='gray')
axes[0, 1].set_title("Translated P")
axes[0, 1].axis('off')
axes[0, 2].imshow(reconstr_N.squeeze(0).permute(1, 2, 0).cpu().detach().numpy(), cmap='gray')
axes[0, 2].set_title("Reconstructed N")
axes[0, 2].axis('off')
# Plot real P, translated N, and reconstructed P
axes[1, 0].imshow(img_P.squeeze(0).permute(1, 2, 0).cpu().detach().numpy(), cmap='gray')
axes[1, 0].set_title("Real P")
axes[1, 0].axis('off')
axes[1, 1].imshow(fake_N.squeeze(0).permute(1, 2, 0).cpu().detach().numpy(), cmap='gray')
axes[1, 1].set_title("Translated N")
axes[1, 1].axis('off')
axes[1, 2].imshow(reconstr_P.squeeze(0).permute(1, 2, 0).cpu().detach().numpy(), cmap='gray')
axes[1, 2].set_title("Reconstructed P")
axes[1, 2].axis('off')
# Log the figure in WandB
wandb.log({"test_images": wandb.Image(fig)})
plt.close(fig) |