File size: 4,316 Bytes
e2f99d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
85f0ffb
e2f99d5
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
7795c88
 
 
 
e2f99d5
00975db
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
import gradio as gr
from PIL import Image
import os
from IndicPhotoOCR.ocr import OCR  # Ensure OCR class is saved in a file named ocr.py
from IndicPhotoOCR.theme import Seafoam

# Initialize the OCR object for text detection and recognition
ocr = OCR(device="cpu", verbose=False)

def process_image(image):
    """
    Processes the uploaded image for text detection and recognition. 
    - Detects bounding boxes in the image
    - Draws bounding boxes on the image and identifies script in each detected area
    - Recognizes text in each cropped region and returns the annotated image and recognized text

    Parameters:
    image (PIL.Image): The input image to be processed.

    Returns:
    tuple: A PIL.Image with bounding boxes and a string of recognized text.
    """
    
    # Save the input image temporarily
    image_path = "input_image.jpg"
    image.save(image_path)
    
    # Detect bounding boxes on the image using OCR
    detections = ocr.detect(image_path)
    
    # Draw bounding boxes on the image and save it as output
    ocr.visualize_detection(image_path, detections, save_path="output_image.png")
    
    # Load the annotated image with bounding boxes drawn
    output_image = Image.open("output_image.png")
    
    # Initialize list to hold recognized text from each detected area
    recognized_texts = []
    pil_image = Image.open(image_path)
    
    # Process each detected bounding box for script identification and text recognition
    for bbox in detections:
        # Identify the script and crop the image to this region
        script_lang, cropped_path = ocr.crop_and_identify_script(pil_image, bbox)
        
        if script_lang:  # Only proceed if a script language is identified
            # Recognize text in the cropped area
            recognized_text = ocr.recognise(cropped_path, script_lang)
            recognized_texts.append(recognized_text)
    
    # Combine recognized texts into a single string for display
    recognized_texts_combined = " ".join(recognized_texts)
    return output_image, recognized_texts_combined

# Custom HTML for interface header with logos and alignment
interface_html = """
<div style="text-align: left; padding: 10px;">
    <div style="background-color: white; padding: 10px; display: inline-block;">
        <img src="https://iitj.ac.in/images/logo/Design-of-New-Logo-of-IITJ-2.png" alt="IITJ Logo" style="width: 100px; height: 100px;">
    </div>
    <img src="https://play-lh.googleusercontent.com/_FXSr4xmhPfBykmNJvKvC0GIAVJmOLhFl6RA5fobCjV-8zVSypxX8yb8ka6zu6-4TEft=w240-h480-rw" alt="Bhashini Logo" style="width: 100px; height: 100px; float: right;">
</div>
"""



# Links to GitHub and Dataset repositories with GitHub icon
links_html = """
<div style="text-align: center; padding-top: 20px;">
    <a href="https://github.com/Bhashini-IITJ/IndicPhotoOCR" target="_blank" style="margin-right: 20px; font-size: 18px; text-decoration: none;">
        GitHub Repository
    </a>
    <a href="https://github.com/Bhashini-IITJ/BharatSceneTextDataset" target="_blank" style="font-size: 18px; text-decoration: none;">
        Dataset Repository
    </a>
</div>
"""

# Custom CSS to style the text box font size
custom_css = """
.custom-textbox textarea {
    font-size: 20px !important;
}
"""

# Create an instance of the Seafoam theme for a consistent visual style
seafoam = Seafoam()

# Define examples for users to try out
examples = [
    ["test_images/image_141.jpg"],
    ["test_images/image_1164.jpg"]
]

title = "<h1 style='text-align: center;'>Developed by IITJ</h1>"

# Set up the Gradio Interface with the defined function and customizations
demo = gr.Interface(
    fn=process_image,
    inputs=gr.Image(type="pil", image_mode="RGB"),
    outputs=[
        gr.Image(type="pil", label="Detected Bounding Boxes"),
        gr.Textbox(label="Recognized Text", elem_classes="custom-textbox")
    ],
    title="IndicPhotoOCR - Indic Scene Text Recogniser Toolkit",
    description=title+interface_html+links_html,
    theme=seafoam,
    css=custom_css,
    examples=examples
)

# # Server setup and launch configuration
# if __name__ == "__main__":
#     server = "0.0.0.0"  # IP address for server
#     port = 7865  # Port to run the server on
#     demo.launch(server_name=server, server_port=port)

demo.launch()