Spaces:
Runtime error
Runtime error
File size: 1,296 Bytes
dc745aa 913faff aca8471 dc745aa 0cc666b dc745aa aca8471 dc745aa 0dfd905 aca8471 78b7a52 0dfd905 78b7a52 06e9cb5 78b7a52 5ac7bd3 dc745aa 06e9cb5 dc745aa |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 |
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, BitsAndBytesConfig
import os
from peft import PeftModel, PeftConfig
from transformers import AutoModelForCausalLM
# Cấu hình BitsAndBytes để tải mô hình 4-bit
# bnb_config = BitsAndBytesConfig(
# load_in_4bit=True,
# bnb_4bit_quant_type='nf4',
# bnb_4bit_compute_dtype="float16",
# bnb_4bit_use_double_quant=False,
# )
# Thiết lập mô hình và tokenizer
def load_model():
token = os.getenv("HF_TOKEN") # Lấy token từ biến môi trường
# config = PeftConfig.from_pretrained("anhvv200053/Vinallama-2-7B-updated1-instruction-v2")
# base_model = AutoModelForCausalLM.from_pretrained("vilm/vinallama-2.7b-chat")
# model = PeftModel.from_pretrained(base_model, "anhvv200053/Vinallama-2-7B-updated1-instruction-v2", token = token)
model = AutoModelForCausalLM.from_pretrained(
"anhvv200053/Vinallam_vssai_model",
device_map={"": "cpu"}, # Đặt sử dụng CPU
token = token
)
# model.config.pretraining_tp = 1
tokenizer = AutoTokenizer.from_pretrained('anhvv200053/Vinallam_vssai_model', trust_remote_code=True, use_fast=True, token = token)
tokenizer.pad_token = tokenizer.eos_token
return model, tokenizer
|