Angelawork commited on
Commit
4563ea0
·
1 Parent(s): 7222a6a

single output gradio app

Browse files
Files changed (1) hide show
  1. app.py +142 -0
app.py ADDED
@@ -0,0 +1,142 @@
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
+ import os
2
+ import urllib.request
3
+ import gradio as gr
4
+ from transformers import T5Tokenizer, T5ForConditionalGeneration
5
+ import huggingface_hub
6
+ import re
7
+ from transformers import AutoTokenizer, AutoModelForCausalLM
8
+ import torch
9
+ import time
10
+ import transformers
11
+ import requests
12
+ import globals
13
+ from utility import *
14
+
15
+ """set up"""
16
+ huggingface_hub.login(token=globals.HF_TOKEN)
17
+ gemma_tokenizer = AutoTokenizer.from_pretrained(globals.gemma_2b_URL)
18
+ gemma_model = AutoModelForCausalLM.from_pretrained(globals.gemma_2b_URL)
19
+
20
+ falcon_tokenizer = AutoTokenizer.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True, device_map=globals.device_map, offload_folder="offload")
21
+ falcon_model = AutoModelForCausalLM.from_pretrained(globals.falcon_7b_URL, trust_remote_code=True,
22
+ torch_dtype=torch.bfloat16, device_map=globals.device_map, offload_folder="offload")
23
+
24
+ def get_model(model_typ):
25
+ if model_typ not in ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"]:
26
+ raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".')
27
+ if model_typ=="gemma":
28
+ tokenizer = gemma_tokenizer
29
+ model = gemma_model
30
+ prefix = globals.gemma_PREFIX
31
+ elif model_typ=="falcon_api":
32
+ prefix = globals.falcon_PREFIX
33
+ model=None
34
+ tokenizer = None
35
+ elif model_typ=="falcon":
36
+ tokenizer = falcon_tokenizer
37
+ model = falcon_model
38
+ prefix = globals.falcon_PREFIX
39
+ elif model_typ in ["simplet5_base","simplet5_large"]:
40
+ prefix = globals.simplet5_PREFIX
41
+ URL = globals.simplet5_base_URL if model_typ=="simplet5_base" else globals.simplet5_large_URL
42
+ T5_MODEL_PATH = f"https://huggingface.co/{URL}/resolve/main/{globals.T5_FILE_NAME}"
43
+ fetch_model(T5_MODEL_PATH, globals.T5_FILE_NAME)
44
+ tokenizer = T5Tokenizer.from_pretrained(URL)
45
+ model = T5ForConditionalGeneration.from_pretrained(URL)
46
+ return model, tokenizer, prefix
47
+
48
+ def single_query(model_typ="gemma",prompt="She has a heart of gold",
49
+ max_length=256,
50
+ api_token=""):
51
+ model, tokenizer, prefix = get_model(model_typ)
52
+ if api_token=="" and model_typ=="falcon_api":
53
+ return "Warning: Aborted, Access token needed to access HuggingFace FalconAPI"
54
+
55
+ start_time = time.time()
56
+ input = prefix.replace("{fig}", prompt)
57
+ print(f"Input to model: \n{input}")
58
+
59
+ if model_typ == "simplet5_base" or model_typ == "simplet5_large":
60
+ inputs = tokenizer(input, return_tensors="pt")
61
+ outputs = model.generate(
62
+ inputs["input_ids"],
63
+ temperature=0.7,
64
+ max_length=max_length,
65
+ num_beams=5,
66
+ top_k=10,
67
+ do_sample=True,
68
+ num_return_sequences=1,
69
+ early_stopping=True
70
+ )
71
+ answer = tokenizer.decode(outputs[0], skip_special_tokens=True)
72
+ elif model_typ=="gemma":
73
+ inputs = tokenizer(input, return_tensors="pt")
74
+ generate_ids = model.generate(inputs.input_ids, max_length=max_length)
75
+ output= tokenizer.batch_decode(generate_ids, skip_special_tokens=True, clean_up_tokenization_spaces=False)[0]
76
+ print(f"Model original output:{output}\n")
77
+ answer = post_process(output,input)
78
+ # pattern = r"\*\*Literal Meaning:\*\*\s*(.*?)(?:\n\n|$)"
79
+ # match = re.search(pattern, output, re.DOTALL)
80
+ # if match:
81
+ # answer = match.group(1).strip()
82
+ # else:
83
+ # answer = output
84
+
85
+ elif model_typ=="falcon":
86
+ falcon_pipeline = transformers.pipeline(
87
+ "text-generation",
88
+ model=model,
89
+ tokenizer=tokenizer,
90
+ )
91
+ sequences = falcon_pipeline(
92
+ prompt,
93
+ max_length=max_length,
94
+ do_sample=False, # processing time too long, disable sampling for deterministic output
95
+ num_return_sequences=1,
96
+ eos_token_id=falcon_tokenizer.eos_token_id,
97
+ )
98
+ for seq in sequences:
99
+ print(f"Result: \n{seq['generated_text']}")
100
+ elif model_typ=="falcon_api":
101
+ API_URL = "https://api-inference.huggingface.co/models/tiiuae/falcon-7b-instruct"
102
+ headers = {"Authorization": f"Bearer {api_token}"}
103
+ payload = {
104
+ "inputs": input,
105
+ "parameters": {
106
+ "temperature": 0.7,
107
+ "max_length": max_length,
108
+ "num_return_sequences": 1
109
+ }
110
+ }
111
+ output = api_query(API_URL=API_URL,headers=headers,payload=payload)
112
+ answer = output[0]["generated_text"]
113
+ answer = post_process(answer,input)
114
+
115
+ else:
116
+ raise ValueError('Invalid model type. Choose "gemma", "falcon", "falcon_api","simplet5_base", "simplet5_large".')
117
+
118
+ print(f"Time taken: {time.time()-start_time:.2f} seconds")
119
+ print(f"processed model output: {answer}")
120
+
121
+ return answer
122
+
123
+ model_types = ["gemma", "falcon", "falcon_api", "simplet5_base", "simplet5_large"]
124
+
125
+ single_gradio = gr.Interface(
126
+ fn=single_query,
127
+ inputs=[
128
+
129
+ gr.Dropdown(choices=model_types, label="Select Model Type"),
130
+ gr.Textbox(lines=2, placeholder="Enter a sentence...", label="Input Sentence"),
131
+ gr.Slider(minimum=50, maximum=512, step=10, value=256, label="Max Length"),
132
+ gr.Textbox(lines=1, placeholder="Enter your API token", label="HuggingFace Token",value=""),
133
+ ],
134
+ outputs="text",
135
+ theme=gr.themes.Soft(),
136
+ title=globals.TITLE,
137
+ description="Select a model type from the dropdown and input a sentence to get the paraphrased literal meaning",
138
+ examples=globals.XAMPLE
139
+ )
140
+
141
+ if __name__ == '__main__':
142
+ single_gradio.launch()