KingNish commited on
Commit
647a1db
·
verified ·
1 Parent(s): 59628f2

Update custom_pipeline.py

Browse files
Files changed (1) hide show
  1. custom_pipeline.py +165 -162
custom_pipeline.py CHANGED
@@ -1,165 +1,168 @@
1
- import gradio as gr
2
- import numpy as np
3
- import random
4
- import spaces
5
  import torch
6
- import time
7
- from diffusers import DiffusionPipeline
8
- from custom_pipeline import FLUXPipelineWithIntermediateOutputs
9
-
10
- # Constants
11
- MAX_SEED = np.iinfo(np.int32).max
12
- MAX_IMAGE_SIZE = 2048
13
- DEFAULT_WIDTH = 1024
14
- DEFAULT_HEIGHT = 1024
15
- DEFAULT_INFERENCE_STEPS = 1
16
-
17
- # Device and model setup
18
- dtype = torch.float16
19
- pipe = FLUXPipelineWithIntermediateOutputs.from_pretrained(
20
- "black-forest-labs/FLUX.1-schnell", torch_dtype=dtype
21
- ).to("cuda")
22
- torch.cuda.empty_cache()
23
-
24
- # Inference function
25
- @spaces.GPU(duration=25)
26
- def generate_image(prompt, seed=42, width=DEFAULT_WIDTH, height=DEFAULT_HEIGHT, randomize_seed=False, num_inference_steps=2, progress=gr.Progress(track_tqdm=True)):
27
- if randomize_seed:
28
- seed = random.randint(0, MAX_SEED)
29
- generator = torch.Generator().manual_seed(int(float(seed)))
30
-
31
- start_time = time.time()
32
-
33
- # Only generate the last image in the sequence
34
- for img in pipe.generate_images(
35
- prompt=prompt,
36
- guidance_scale=0, # as Flux schnell is guidance free
37
- num_inference_steps=num_inference_steps,
38
- width=width,
39
- height=height,
40
- generator=generator
41
- ):
42
- latency = f"Latency: {(time.time()-start_time):.2f} seconds"
43
- yield img, seed, latency
44
-
45
- # Example prompts
46
- examples = [
47
- "a tiny astronaut hatching from an egg on the moon",
48
- "a cute white cat holding a sign that says hello world",
49
- "an anime illustration of a wiener schnitzel",
50
- "Create mage of Modern house in minecraft style",
51
- "Imagine steve jobs as Star Wars movie character",
52
- "Lion",
53
- "Photo of a young woman with long, wavy brown hair tied in a bun and glasses. She has a fair complexion and is wearing subtle makeup, emphasizing her eyes and lips. She is dressed in a black top. The background appears to be an urban setting with a building facade, and the sunlight casts a warm glow on her face.",
54
- ]
55
-
56
- # --- Gradio UI ---
57
- with gr.Blocks() as demo:
58
- with gr.Column(elem_id="app-container"):
59
- gr.Markdown("# 🎨 Realtime FLUX Image Generator")
60
- gr.Markdown("Generate stunning images in real-time with Modified Flux.Schnell pipeline.")
61
- gr.Markdown("<span style='color: red;'>Note: Sometimes it stucks or stops generating images (I don't know why). In that situation just refresh the site.</span>")
62
-
63
- with gr.Row():
64
- with gr.Column(scale=3):
65
- result = gr.Image(label="Generated Image", show_label=False, interactive=False)
66
- with gr.Column(scale=1):
67
- prompt = gr.Text(
68
- label="Prompt",
69
- placeholder="Describe the image you want to generate...",
70
- lines=3,
71
- show_label=False,
72
- container=False,
73
- )
74
- generateBtn = gr.Button("🖼️ Generate Image")
75
- enhanceBtn = gr.Button("🚀 Enhance Image")
76
-
77
- with gr.Column("Advanced Options"):
78
- with gr.Row():
79
- realtime = gr.Checkbox(label="Realtime Toggler", info="If TRUE then uses more GPU but create image in realtime.", value=False)
80
- latency = gr.Text(label="Latency")
81
- with gr.Row():
82
- seed = gr.Number(label="Seed", value=42)
83
- randomize_seed = gr.Checkbox(label="Randomize Seed", value=False)
84
- with gr.Row():
85
- width = gr.Slider(label="Width", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_WIDTH)
86
- height = gr.Slider(label="Height", minimum=256, maximum=MAX_IMAGE_SIZE, step=32, value=DEFAULT_HEIGHT)
87
- num_inference_steps = gr.Slider(label="Inference Steps", minimum=1, maximum=4, step=1, value=DEFAULT_INFERENCE_STEPS)
88
-
89
- with gr.Row():
90
- gr.Markdown("### 🌟 Inspiration Gallery")
91
- with gr.Row():
92
- gr.Examples(
93
- examples=examples,
94
- fn=generate_image,
95
- inputs=[prompt],
96
- outputs=[result, seed, latency],
97
- cache_examples="lazy"
98
- )
99
-
100
- def enhance_image(*args):
101
- gr.Info("Enhancing Image") # currently just runs optimized pipeline for 2 steps. Further implementations later.
102
- return next(generate_image(*args))
103
-
104
- enhanceBtn.click(
105
- fn=enhance_image,
106
- inputs=[prompt, seed, width, height],
107
- outputs=[result, seed, latency],
108
- show_progress="hidden",
109
- api_name=False,
110
- queue=False,
111
- concurrency_limit=None
112
- )
113
-
114
- generateBtn.click(
115
- fn=generate_image,
116
- inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
117
- outputs=[result, seed, latency],
118
- show_progress="full",
119
- api_name="RealtimeFlux",
120
- queue=False,
121
- concurrency_limit=None
122
- )
123
-
124
- def update_ui(realtime_enabled):
125
- return {
126
- prompt: gr.update(interactive=True),
127
- generateBtn: gr.update(visible=not realtime_enabled)
128
- }
129
-
130
- realtime.change(
131
- fn=update_ui,
132
- inputs=[realtime],
133
- outputs=[prompt, generateBtn],
134
- queue=False,
135
- concurrency_limit=None
136
- )
137
-
138
- def realtime_generation(*args):
139
- if args[0]: # If realtime is enabled
140
- return next(generate_image(*args[1:]))
141
-
142
- prompt.submit(
143
- fn=generate_image,
144
- inputs=[prompt, seed, width, height, randomize_seed, num_inference_steps],
145
- outputs=[result, seed, latency],
146
- show_progress="full",
147
- api_name=False,
148
- queue=False,
149
- concurrency_limit=None
150
- )
151
-
152
- for component in [prompt, width, height, num_inference_steps]:
153
- component.input(
154
- fn=realtime_generation,
155
- inputs=[realtime, prompt, seed, width, height, randomize_seed, num_inference_steps],
156
- outputs=[result, seed, latency],
157
- show_progress="hidden",
158
- api_name=False,
159
- trigger_mode="always_last",
160
- queue=False,
161
- concurrency_limit=None
162
  )
163
 
164
- # Launch the app
165
- demo.launch()
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
  import torch
2
+ import numpy as np
3
+ from diffusers import FluxPipeline, FlowMatchEulerDiscreteScheduler
4
+ from typing import Any, Dict, List, Optional, Union
5
+ from PIL import Image
6
+
7
+ # Constants for shift calculation
8
+ BASE_SEQ_LEN = 256
9
+ MAX_SEQ_LEN = 4096
10
+ BASE_SHIFT = 0.5
11
+ MAX_SHIFT = 1.2
12
+
13
+ # Helper functions
14
+ def calculate_timestep_shift(image_seq_len: int) -> float:
15
+ """Calculates the timestep shift (mu) based on the image sequence length."""
16
+ m = (MAX_SHIFT - BASE_SHIFT) / (MAX_SEQ_LEN - BASE_SEQ_LEN)
17
+ b = BASE_SHIFT - m * BASE_SEQ_LEN
18
+ mu = image_seq_len * m + b
19
+ return mu
20
+
21
+ def prepare_timesteps(
22
+ scheduler: FlowMatchEulerDiscreteScheduler,
23
+ num_inference_steps: Optional[int] = None,
24
+ device: Optional[Union[str, torch.device]] = None,
25
+ timesteps: Optional[List[int]] = None,
26
+ sigmas: Optional[List[float]] = None,
27
+ mu: Optional[float] = None,
28
+ ) -> (torch.Tensor, int):
29
+ """Prepares the timesteps for the diffusion process."""
30
+ if timesteps is not None and sigmas is not None:
31
+ raise ValueError("Only one of `timesteps` or `sigmas` can be passed.")
32
+
33
+ if timesteps is not None:
34
+ scheduler.set_timesteps(timesteps=timesteps, device=device)
35
+ elif sigmas is not None:
36
+ scheduler.set_timesteps(sigmas=sigmas, device=device)
37
+ else:
38
+ scheduler.set_timesteps(num_inference_steps, device=device, mu=mu)
39
+
40
+ timesteps = scheduler.timesteps
41
+ num_inference_steps = len(timesteps)
42
+ return timesteps, num_inference_steps
43
+
44
+ # FLUX pipeline function
45
+ class FLUXPipelineWithIntermediateOutputs(FluxPipeline):
46
+ """
47
+ Extends the FluxPipeline to yield intermediate images during the denoising process
48
+ with progressively increasing resolution for faster generation.
49
+ """
50
+ @torch.inference_mode()
51
+ def generate_images(
52
+ self,
53
+ prompt: Union[str, List[str]] = None,
54
+ prompt_2: Optional[Union[str, List[str]]] = None,
55
+ height: Optional[int] = None,
56
+ width: Optional[int] = None,
57
+ num_inference_steps: int = 4,
58
+ timesteps: List[int] = None,
59
+ guidance_scale: float = 3.5,
60
+ num_images_per_prompt: Optional[int] = 1,
61
+ generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
62
+ latents: Optional[torch.FloatTensor] = None,
63
+ prompt_embeds: Optional[torch.FloatTensor] = None,
64
+ pooled_prompt_embeds: Optional[torch.FloatTensor] = None,
65
+ output_type: Optional[str] = "pil",
66
+ return_dict: bool = True,
67
+ joint_attention_kwargs: Optional[Dict[str, Any]] = None,
68
+ max_sequence_length: int = 300,
69
+ ):
70
+ """Generates images and yields intermediate results during the denoising process."""
71
+ height = height or self.default_sample_size * self.vae_scale_factor
72
+ width = width or self.default_sample_size * self.vae_scale_factor
73
+
74
+ # 1. Check inputs
75
+ self.check_inputs(
76
+ prompt,
77
+ prompt_2,
78
+ height,
79
+ width,
80
+ prompt_embeds=prompt_embeds,
81
+ pooled_prompt_embeds=pooled_prompt_embeds,
82
+ max_sequence_length=max_sequence_length,
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
83
  )
84
 
85
+ self._guidance_scale = guidance_scale
86
+ self._joint_attention_kwargs = joint_attention_kwargs
87
+ self._interrupt = False
88
+
89
+ # 2. Define call parameters
90
+ batch_size = 1 if isinstance(prompt, str) else len(prompt)
91
+ device = self._execution_device
92
+
93
+ # 3. Encode prompt
94
+ lora_scale = joint_attention_kwargs.get("scale", None) if joint_attention_kwargs is not None else None
95
+ prompt_embeds, pooled_prompt_embeds, text_ids = self.encode_prompt(
96
+ prompt=prompt,
97
+ prompt_2=prompt_2,
98
+ prompt_embeds=prompt_embeds,
99
+ pooled_prompt_embeds=pooled_prompt_embeds,
100
+ device=device,
101
+ num_images_per_prompt=num_images_per_prompt,
102
+ max_sequence_length=max_sequence_length,
103
+ lora_scale=lora_scale,
104
+ )
105
+ # 4. Prepare latent variables
106
+ num_channels_latents = self.transformer.config.in_channels // 4
107
+ latents, latent_image_ids = self.prepare_latents(
108
+ batch_size * num_images_per_prompt,
109
+ num_channels_latents,
110
+ height,
111
+ width,
112
+ prompt_embeds.dtype,
113
+ device,
114
+ generator,
115
+ latents,
116
+ )
117
+ # 5. Prepare timesteps
118
+ sigmas = np.linspace(1.0, 1 / num_inference_steps, num_inference_steps)
119
+ image_seq_len = latents.shape[1]
120
+ mu = calculate_timestep_shift(image_seq_len)
121
+ timesteps, num_inference_steps = prepare_timesteps(
122
+ self.scheduler,
123
+ num_inference_steps,
124
+ device,
125
+ timesteps,
126
+ sigmas,
127
+ mu=mu,
128
+ )
129
+ self._num_timesteps = len(timesteps)
130
+
131
+ # Handle guidance
132
+ guidance = torch.full([1], guidance_scale, device=device, dtype=torch.float16).expand(latents.shape[0]) if self.transformer.config.guidance_embeds else None
133
+
134
+ # 6. Denoising loop
135
+ for i, t in enumerate(timesteps):
136
+ if self.interrupt:
137
+ continue
138
+
139
+ timestep = t.expand(latents.shape[0]).to(latents.dtype)
140
+
141
+ noise_pred = self.transformer(
142
+ hidden_states=latents,
143
+ timestep=timestep / 1000,
144
+ guidance=guidance,
145
+ pooled_projections=pooled_prompt_embeds,
146
+ encoder_hidden_states=prompt_embeds,
147
+ txt_ids=text_ids,
148
+ img_ids=latent_image_ids,
149
+ joint_attention_kwargs=self.joint_attention_kwargs,
150
+ return_dict=False,
151
+ )[0]
152
+
153
+ # Yield intermediate result
154
+ latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
155
+ torch.cuda.empty_cache()
156
+
157
+ # Final image
158
+ yield self._decode_latents_to_image(latents, height, width, output_type)
159
+ self.maybe_free_model_hooks()
160
+ torch.cuda.empty_cache()
161
+
162
+ def _decode_latents_to_image(self, latents, height, width, output_type, vae=None):
163
+ """Decodes the given latents into an image."""
164
+ vae = vae or self.vae
165
+ latents = self._unpack_latents(latents, height, width, self.vae_scale_factor)
166
+ latents = (latents / vae.config.scaling_factor) + vae.config.shift_factor
167
+ image = vae.decode(latents, return_dict=False)[0]
168
+ return self.image_processor.postprocess(image, output_type=output_type)[0]