File size: 14,067 Bytes
76d9a63
 
8f7ab25
76d9a63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336

from flask import render_template, request, redirect
from app import app
from fileinput import filename
import pandas as pd
from functions import *
import json
#{% autoescape off %}#codigo dentro executa html
#{% endautoescape %}
#https://jsfiddle.net/onury/kBQdS/ cromo criar lista js


        #definicao de variaveis
#device = 'cuda' if cuda.is_available() else 'cpu'
device = 'cpu'
torch.manual_seed(0)

# sub_loss = ['loss', 'newaccidentl', 'newreescreverl', 'newcondl', 'newnotl', 'environment'] #10->5
# sub_hazard = ['hazard', 'newreescreverh', 'newaccidenth', 'fail', 'newnoth', 'newcondh'] #11->5
# sub_constraint = ['prevent', 'recommendation', 'mitigate', 'detect', 'newnotc', 'newreescreverc'] #5->3

step1_labels = ['loss', 'hazard', 'constraint']
step2_labels = ['correct', 'incorrect']
step3_labels = ['rewrite', 'not', 'condition', 'accident', 'correct']

# sub_loss_incorreto = sub_loss.copy()
# sub_loss_incorreto.remove('loss')

# sub_hazard_incorreto = sub_hazard.copy()
# sub_hazard_incorreto.remove('hazard')

# sub_constraint_incorreto = sub_constraint.copy()
# for item in ['prevent', 'detect', 'mitigate']:
#     sub_constraint_incorreto.remove(item)

def label_to_int(df, name, labels):
  for i in range(len(df[name])):
    df.loc[i,name] = labels.index(df.loc[i,name])


#path = './models/8020/'
#path = './models/7030/experimental/menos_erros1/'
path = 'andreyunic23/'
#carregar modelos

tokenizer = AutoTokenizer.from_pretrained('google-bert/bert-base-uncased')

#modelo 1
num_label1 = 3#ok
model_path1 = path+'beds_step1'#ok
#tokenizer = AutoTokenizer.from_pretrained(model_path1)#ok
model_step1 = AutoModelForSequenceClassification.from_pretrained(model_path1, num_labels=num_label1).to(device)#ok

#modelos 2
num_label2 = 2
model_path2l = path+'beds_step2_loss'
model_path2h = path+'beds_step2_hazard'
model_path2c = path+'beds_step2_constraint'
#tokenizer_loss = AutoTokenizer.from_pretrained(model_path2l)
#tokenizer_hazard = AutoTokenizer.from_pretrained(model_path2h)
#tokenizer_constraint = AutoTokenizer.from_pretrained(model_path2c)
model_step2_loss = AutoModelForSequenceClassification.from_pretrained(model_path2l, num_labels=num_label2).to(device)#ok
model_step2_hazard = AutoModelForSequenceClassification.from_pretrained(model_path2h, num_labels=num_label2).to(device)#ok
model_step2_constraint = AutoModelForSequenceClassification.from_pretrained(model_path2c, num_labels=num_label2).to(device)#ok

#labels_corretos = ['loss', 'hazard', 'prevent', 'detect', 'mitigate']
labels_corretos = ['loss', 'hazard', 'constraint']

# #modelo 3

# #num_label = x
model_path3l = path+'beds_step3_loss'
model_path3h = path+'beds_step3_hazard'
model_path3c = path+'beds_step3_constraint'
#tokenizer_loss_incorreto = AutoTokenizer.from_pretrained(model_path3l)
#tokenizer_hazard_incorreto = AutoTokenizer.from_pretrained(model_path3h)
#tokenizer_constraint_incorreto = AutoTokenizer.from_pretrained(model_path3c)
model_step3_loss = AutoModelForSequenceClassification.from_pretrained(model_path3l, num_labels=4).to(device)
model_step3_hazard = AutoModelForSequenceClassification.from_pretrained(model_path3h, num_labels=4).to(device)
model_step3_constraint = AutoModelForSequenceClassification.from_pretrained(model_path3c, num_labels=2).to(device)


#modelo 4
model_path4 = path+'beds_step4'
model_step4 = SentenceTransformer(model_path4)

########era x_loss_correto!!!!!! errei

correct_example_path = "./datasets/"
#correct_example_path = "/home/ATOunic/mysite/datasets/"

correct_loss_df = pd.read_csv(correct_example_path+'correct_loss_reference.csv')
correct_hazard_df = pd.read_csv(correct_example_path+'correct_hazard_reference.csv')
correct_constraint_df = pd.read_csv(correct_example_path+'correct_constraint_reference.csv')

examples_correct_loss = format_examples(correct_loss_df.squeeze().tolist())#to_list())#['req']
examples_correct_hazard = format_examples(correct_hazard_df.squeeze().tolist())#.to_list())#['req']
examples_correct_constraint = format_examples(correct_constraint_df.squeeze().tolist())#.to_list())#['req']

def inferencia(df):

    result_parte1 = []
    result_incorrect_loss = []
    result_incorrect_hazard = []
    result_incorrect_constraint = []
    result_list_sim_loss = []
    result_list_sim_hazard = []
    result_list_sim_constraint= []
    result_list_erro_loss = []
    result_list_erro_hazard = []
    result_list_erro_constraint = []
    

    x_test = df['req'].to_list()
    if(len(df.columns)==2):
        input_type = 'unlabeled'
        pass
    if(len(df.columns)>2):
        y_test = convert_label(df['label'])
        #print('##############################################')#,type(y_test[1]))
        input_type = 'labeled'

    
    

    #teste parte 1
    with torch.no_grad():
        encodings = tokenizer(x_test, truncation=True, padding='max_length', max_length=512,return_tensors="pt")
        results = model_step1(encodings['input_ids'].to(device),encodings['attention_mask'].to(device))#.to(device)
        predictions = np.argmax(results.logits.cpu(), axis=-1)

    ####em vez de printar, guardar as predicoes numa lista [id, sent, orig, pred]
    ### nao sei se eu coloco probabilidade. quando a probabilidade do top é menor que 70%, seja um "bom" mal sinal que deve ser levantado. por enquanto
    if(input_type=='labeled'):
        df_parte1 = df_with_pred(y_test,predictions,df)
    elif(input_type=='unlabeled'):
        df['label'] = predictions.numpy().tolist()
        df_parte1 = df_with_pred(predictions.numpy().tolist(),predictions,df)

    result_parte1 = df_parte1.to_json(orient="records", default_handler=str)


    
    #carregar modelo 2

    #organize predictions: em vez de df, apenas lista de sentencas
    ##posso fazer ver. com rotulo e sem rotulo
    #list_classif_loss, list_classif_hazard, list_classif_constraint = organize_predictions_list(predictions, df_parte1) #return df[id, req]

    list_loss = df[df['label'] == 0]#['req']#.to_list()
    list_hazard = df[df['label'] == 1]#['req']#.to_list()
    #print(list_hazard)
    list_constraint = df[df['label'] == 2]#['req']#.to_list()



    #teste parte 2 loss
    #x_loss = list_loss['req'].to_list()
    #print('x_loss=',x_loss)

    if list_loss['req'].to_list():

        with torch.no_grad():
            test_loss = tokenizer(list_loss['req'].to_list(), truncation=True, padding='max_length', max_length=512,return_tensors="pt")
            results_loss = model_step2_loss(test_loss['input_ids'].to(device),test_loss['attention_mask'].to(device))#.to(device)
            predictions_loss = np.argmax(results_loss.logits.cpu(), axis=-1)

        incorrect_loss = get_incorrect(predictions_loss, list_loss) #return df:[id,req]
        result_incorrect_loss = incorrect_loss.to_json(orient='records', default_handler=str)

        list_sim_loss = check_similarity_return2(incorrect_loss, examples_correct_loss, model_step4)
        result_list_sim_loss = json.dumps(list_sim_loss, default=int)


        # #teste parte 3 loss
        list_incorrect_loss = incorrect_loss['req'].to_list()

        if list_incorrect_loss:

            with torch.no_grad():
                test_loss_incorrect = tokenizer(list_incorrect_loss, truncation=True, padding='max_length', max_length=512,return_tensors="pt")
                results_loss_incorrect = model_step3_loss(test_loss_incorrect['input_ids'].to(device),test_loss_incorrect['attention_mask'].to(device))



            list_erro_loss = list_erro_with_pred(results_loss_incorrect, incorrect_loss, step3_labels)
            result_list_erro_loss = json.dumps(list_erro_loss, default=int)

    #teste parte 2 hazard
    #x_hazard = list_classif_hazard['req'].to_list()

    if list_hazard['req'].to_list():

        with torch.no_grad():
            test_hazard = tokenizer(list_hazard['req'].to_list(), truncation=True, padding='max_length', max_length=512,return_tensors="pt")
            results_hazard = model_step2_hazard(test_hazard['input_ids'].to(device),test_hazard['attention_mask'].to(device))
            predictions_hazard = np.argmax(results_hazard.logits.cpu(), axis=-1)

 
        
        incorrect_hazard = get_incorrect(predictions_hazard, list_hazard)
        result_incorrect_hazard = incorrect_hazard.to_json(orient='records', default_handler=str)

        list_sim_hazard = check_similarity_return2(incorrect_hazard, examples_correct_hazard, model_step4)
        result_list_sim_hazard = json.dumps(list_sim_hazard, default=int)


        #teste parte 3 hazard
        list_incorrect_hazard = incorrect_hazard['req'].to_list()

        if list_incorrect_hazard:

            with torch.no_grad():
                test_hazard_incorrect = tokenizer(list_incorrect_hazard, truncation=True, padding='max_length', max_length=512,return_tensors="pt")
                results_hazard_incorrect = model_step3_hazard(test_hazard_incorrect['input_ids'].to(device),test_hazard_incorrect['attention_mask'].to(device))



            list_erro_hazard = list_erro_with_pred(results_hazard_incorrect, incorrect_hazard, step3_labels)
            result_list_erro_hazard = json.dumps(list_erro_hazard, default=int)


    #teste parte 2 constraint
    #x_constraint = list_classif_constraint['req'].to_list()

    if list_constraint['req'].to_list():

        with torch.no_grad():
            test_constraint = tokenizer(list_constraint['req'].to_list(), truncation=True, padding='max_length', max_length=512,return_tensors="pt")
            results_constraint = model_step2_constraint(test_constraint['input_ids'].to(device),test_constraint['attention_mask'].to(device))
            predictions_constraint = np.argmax(results_constraint.logits.cpu(), axis=-1)

        incorrect_constraint = get_incorrect(predictions_constraint, list_constraint)
        result_incorrect_constraint = incorrect_constraint.to_json(orient='records', default_handler=str)


        list_sim_constraint = check_similarity_return2(incorrect_constraint, examples_correct_constraint, model_step4)
        result_list_sim_constraint = json.dumps(list_sim_constraint, default=int)
    
        #teste parte 3 constraint
        list_incorrect_constraint = incorrect_constraint['req'].to_list()

        if  list_incorrect_constraint:
        
            with torch.no_grad():
                test_constraint_incorrect = tokenizer( list_incorrect_constraint, truncation=True, padding='max_length', max_length=512,return_tensors="pt")
                results_constraint_incorrect = model_step3_constraint(test_constraint_incorrect['input_ids'].to(device),test_constraint_incorrect['attention_mask'].to(device))



            list_erro_constraint = list_erro_with_pred(results_constraint_incorrect, incorrect_constraint, step3_labels)
            result_list_erro_constraint = json.dumps(list_erro_constraint, default=int)
    
    #parte 4


    

    return render_template("interface.html",
                            #data = result,
                            result_parte1 = result_parte1,
                            result_incorrect_loss = result_incorrect_loss,
                            result_incorrect_hazard = result_incorrect_hazard,
                            result_incorrect_constraint = result_incorrect_constraint,
                            result_list_sim_loss = result_list_sim_loss,
                            result_list_sim_hazard = result_list_sim_hazard,
                            result_list_sim_constraint= result_list_sim_constraint,
                            result_list_erro_loss = result_list_erro_loss,
                            result_list_erro_hazard = result_list_erro_hazard,
                            result_list_erro_constraint = result_list_erro_constraint
                            )

@app.route('/')
def homepage():
    return render_template('index.html', name='', file = None)

@app.route('/interface3', methods = ['POST'])#para teste da hp
def teste():
    return render_template('interface.html', name='', file = None)

@app.route('/interface', methods = ['POST'])#/success   
def success():   
    if request.method == 'POST':   
        f = request.files['file'] 
        #df = pd.read_csv(f, names=['req','label'], sep=',', header=None, on_bad_lines='skip')
        df = pd.read_csv(f, sep=',', header=None, on_bad_lines='skip')
        #print(len(df.columns))
        if(len(df.columns)==1):
            df.columns = ['req']
        elif(len(df.columns)>1):
            df.columns = ['req','label']
        df.insert(0, 'id', range(0, 0 + len(df)))
        #result = df.to_json(orient="records")

############################################# FIM
        #f.save(f.filename)
        
    return inferencia(df)

def parse_text(text):
    sentences = []
    split = text.split('\n')
    for item in split:
        item = item.replace('\r','')
        if item!= '':
            sentences.append(item)
    return sentences

@app.route('/interface2', methods = ['POST'])
def success2():
    if request.method == 'POST':   
        form_loss = request.form['text_loss']
        form_loss = parse_text(form_loss)
        form_hazard = request.form['text_hazard']
        form_hazard = parse_text(form_hazard)
        form_constraint = request.form['text_constraint']
        form_constraint = parse_text(form_constraint)

        #fill_loss = ['loss' for x in range(len(form_loss))]
        fill_loss = ['loss'] * len(form_loss)
        fill_hazard = ['hazard'] * len(form_hazard)
        fill_constraint = ['constraint'] * len(form_constraint)

        dict_loss = {'req': form_loss, 'label': fill_loss}
        dict_hazard = {'req': form_hazard, 'label': fill_hazard}
        dict_constraint = {'req': form_constraint, 'label': fill_constraint}

        df = pd.DataFrame(dict_loss)  
        df = pd.concat([df, pd.DataFrame(dict_hazard)])
        df = pd.concat([df, pd.DataFrame(dict_constraint)])
        df.insert(0, 'id', range(0, 0 + len(df)))
        df.reset_index(drop=True, inplace=True)


    return inferencia(df)
        #return render_template("interface.html", name='', file = None)