andreped commited on
Commit
d21da4f
·
1 Parent(s): 4a775c0

improved argparse stuff

Browse files
Files changed (3) hide show
  1. .gitignore +4 -0
  2. livermask/livermask.py +96 -78
  3. setup.py +2 -2
.gitignore ADDED
@@ -0,0 +1,4 @@
 
 
 
 
 
1
+ venv/
2
+ build/
3
+ dist/
4
+ livermask.egg-info/
livermask/livermask.py CHANGED
@@ -10,120 +10,138 @@ import gdown
10
  from skimage.morphology import remove_small_holes, binary_dilation, binary_erosion, ball
11
  from skimage.measure import label, regionprops
12
  import warnings
 
 
 
 
 
13
  warnings.filterwarnings('ignore', '.*output shape of zoom.*')
14
 
15
 
16
  def intensity_normalization(volume, intensity_clipping_range):
17
- result = np.copy(volume)
18
 
19
- result[volume < intensity_clipping_range[0]] = intensity_clipping_range[0]
20
- result[volume > intensity_clipping_range[1]] = intensity_clipping_range[1]
21
 
22
- min_val = np.amin(result)
23
- max_val = np.amax(result)
24
- if (max_val - min_val) != 0:
25
- result = (result - min_val) / (max_val - min_val)
26
 
27
- return result
28
 
29
  def post_process(pred):
30
- return pred
31
 
32
  def get_model():
33
- url = "https://drive.google.com/uc?id=12or5Q79at2BtLgQ7IaglNGPFGRlEgEHc"
34
- output = "model.h5"
35
- md5 = "ef5a6dfb794b39bea03f5496a9a49d4d"
36
- gdown.cached_download(url, output, md5=md5) #, postprocess=gdown.extractall)
37
 
38
  def func(path, output):
39
 
40
- cwd = "/".join(os.path.realpath(__file__).replace("\\", "/").split("/")[:-1]) + "/"
41
 
42
- name = cwd + "model.h5"
43
 
44
- # get model
45
- get_model()
46
 
47
- # load model
48
- model = load_model(name, compile=False)
49
 
50
- print("preprocessing...")
51
- nib_volume = nib.load(path)
52
- new_spacing = [1., 1., 1.]
53
- resampled_volume = resample_to_output(nib_volume, new_spacing, order=1)
54
- data = resampled_volume.get_data().astype('float32')
55
 
56
- curr_shape = data.shape
57
 
58
- # resize to get (512, 512) output images
59
- img_size = 512
60
- data = zoom(data, [img_size / data.shape[0], img_size / data.shape[1], 1.0], order=1)
61
 
62
- # intensity normalization
63
- intensity_clipping_range = [-150, 250] # HU clipping limits (Pravdaray's configs)
64
- data = intensity_normalization(volume=data, intensity_clipping_range=intensity_clipping_range)
65
 
66
- # fix orientation
67
- data = np.rot90(data, k=1, axes=(0, 1))
68
- data = np.flip(data, axis=0)
69
 
70
- print("predicting...")
71
- # predict on data
72
- pred = np.zeros_like(data).astype(np.float32)
73
- for i in tqdm(range(data.shape[-1]), "pred: "):
74
- pred[..., i] = model.predict(np.expand_dims(np.expand_dims(np.expand_dims(data[..., i], axis=0), axis=-1), axis=0))[0, ..., 1]
75
- del data
76
 
77
- # threshold
78
- pred = (pred >= 0.4).astype(int)
79
 
80
- # fix orientation back
81
- pred = np.flip(pred, axis=0)
82
- pred = np.rot90(pred, k=-1, axes=(0, 1))
83
 
84
- print("resize back...")
85
- # resize back from 512x512
86
- pred = zoom(pred, [curr_shape[0] / img_size, curr_shape[1] / img_size, 1.0], order=1)
87
- pred = (pred >= 0.5).astype(np.float32)
88
 
89
- print("morphological post-processing...")
90
- # morpological post-processing
91
- # 1) first erode
92
- pred = binary_erosion(pred.astype(bool), ball(3)).astype(np.float32)
93
 
94
- # 2) keep only largest connected component
95
- labels = label(pred)
96
- regions = regionprops(labels)
97
- area_sizes = []
98
- for region in regions:
99
- area_sizes.append([region.label, region.area])
100
- area_sizes = np.array(area_sizes)
101
- tmp = np.zeros_like(pred)
102
- tmp[labels == area_sizes[np.argmax(area_sizes[:, 1]), 0]] = 1
103
- pred = tmp.copy()
104
- del tmp, labels, regions, area_sizes
105
 
106
- # 3) dilate
107
- pred = binary_dilation(pred.astype(bool), ball(3))
108
 
109
- # 4) remove small holes
110
- pred = remove_small_holes(pred.astype(bool), area_threshold=0.001*np.prod(pred.shape)).astype(np.float32)
111
 
112
- print("saving...")
113
- pred = pred.astype(np.uint8)
114
- img = nib.Nifti1Image(pred, affine=resampled_volume.affine)
115
- resampled_lab = resample_from_to(img, nib_volume, order=0)
116
- nib.save(resampled_lab, output)
117
 
118
 
119
  def main():
120
- os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # disable GPU
 
 
 
 
 
 
 
 
 
 
 
 
121
 
122
- path = sys.argv[1]
123
- output = sys.argv[2]
 
124
 
125
- func(path, output)
126
 
127
 
128
  if __name__ == "__main__":
129
- main()
 
10
  from skimage.morphology import remove_small_holes, binary_dilation, binary_erosion, ball
11
  from skimage.measure import label, regionprops
12
  import warnings
13
+ import argparse
14
+ import pkg_resources
15
+
16
+
17
+ # mute some warnings
18
  warnings.filterwarnings('ignore', '.*output shape of zoom.*')
19
 
20
 
21
  def intensity_normalization(volume, intensity_clipping_range):
22
+ result = np.copy(volume)
23
 
24
+ result[volume < intensity_clipping_range[0]] = intensity_clipping_range[0]
25
+ result[volume > intensity_clipping_range[1]] = intensity_clipping_range[1]
26
 
27
+ min_val = np.amin(result)
28
+ max_val = np.amax(result)
29
+ if (max_val - min_val) != 0:
30
+ result = (result - min_val) / (max_val - min_val)
31
 
32
+ return result
33
 
34
  def post_process(pred):
35
+ return pred
36
 
37
  def get_model():
38
+ url = "https://drive.google.com/uc?id=12or5Q79at2BtLgQ7IaglNGPFGRlEgEHc"
39
+ output = "model.h5"
40
+ md5 = "ef5a6dfb794b39bea03f5496a9a49d4d"
41
+ gdown.cached_download(url, output, md5=md5) #, postprocess=gdown.extractall)
42
 
43
  def func(path, output):
44
 
45
+ cwd = "/".join(os.path.realpath(__file__).replace("\\", "/").split("/")[:-1]) + "/"
46
 
47
+ name = cwd + "model.h5"
48
 
49
+ # get model
50
+ get_model()
51
 
52
+ # load model
53
+ model = load_model(name, compile=False)
54
 
55
+ print("preprocessing...")
56
+ nib_volume = nib.load(path)
57
+ new_spacing = [1., 1., 1.]
58
+ resampled_volume = resample_to_output(nib_volume, new_spacing, order=1)
59
+ data = resampled_volume.get_data().astype('float32')
60
 
61
+ curr_shape = data.shape
62
 
63
+ # resize to get (512, 512) output images
64
+ img_size = 512
65
+ data = zoom(data, [img_size / data.shape[0], img_size / data.shape[1], 1.0], order=1)
66
 
67
+ # intensity normalization
68
+ intensity_clipping_range = [-150, 250] # HU clipping limits (Pravdaray's configs)
69
+ data = intensity_normalization(volume=data, intensity_clipping_range=intensity_clipping_range)
70
 
71
+ # fix orientation
72
+ data = np.rot90(data, k=1, axes=(0, 1))
73
+ data = np.flip(data, axis=0)
74
 
75
+ print("predicting...")
76
+ # predict on data
77
+ pred = np.zeros_like(data).astype(np.float32)
78
+ for i in tqdm(range(data.shape[-1]), "pred: "):
79
+ pred[..., i] = model.predict(np.expand_dims(np.expand_dims(np.expand_dims(data[..., i], axis=0), axis=-1), axis=0))[0, ..., 1]
80
+ del data
81
 
82
+ # threshold
83
+ pred = (pred >= 0.4).astype(int)
84
 
85
+ # fix orientation back
86
+ pred = np.flip(pred, axis=0)
87
+ pred = np.rot90(pred, k=-1, axes=(0, 1))
88
 
89
+ print("resize back...")
90
+ # resize back from 512x512
91
+ pred = zoom(pred, [curr_shape[0] / img_size, curr_shape[1] / img_size, 1.0], order=1)
92
+ pred = (pred >= 0.5).astype(np.float32)
93
 
94
+ print("morphological post-processing...")
95
+ # morpological post-processing
96
+ # 1) first erode
97
+ pred = binary_erosion(pred.astype(bool), ball(3)).astype(np.float32)
98
 
99
+ # 2) keep only largest connected component
100
+ labels = label(pred)
101
+ regions = regionprops(labels)
102
+ area_sizes = []
103
+ for region in regions:
104
+ area_sizes.append([region.label, region.area])
105
+ area_sizes = np.array(area_sizes)
106
+ tmp = np.zeros_like(pred)
107
+ tmp[labels == area_sizes[np.argmax(area_sizes[:, 1]), 0]] = 1
108
+ pred = tmp.copy()
109
+ del tmp, labels, regions, area_sizes
110
 
111
+ # 3) dilate
112
+ pred = binary_dilation(pred.astype(bool), ball(3))
113
 
114
+ # 4) remove small holes
115
+ pred = remove_small_holes(pred.astype(bool), area_threshold=0.001*np.prod(pred.shape)).astype(np.float32)
116
 
117
+ print("saving...")
118
+ pred = pred.astype(np.uint8)
119
+ img = nib.Nifti1Image(pred, affine=resampled_volume.affine)
120
+ resampled_lab = resample_from_to(img, nib_volume, order=0)
121
+ nib.save(resampled_lab, output)
122
 
123
 
124
  def main():
125
+ # os.environ["CUDA_VISIBLE_DEVICES"] = "-1" # disable GPU
126
+ version = pkg_resources.require("livermask")[0].version
127
+
128
+ parser = argparse.ArgumentParser()
129
+ parser.add_argument('--input', metavar='--i', type=str, nargs='?',
130
+ help="set path of which image to use.")
131
+ parser.add_argument('--output', metavar='--o', type=str, nargs='?',
132
+ help="set path to store the output.")
133
+ parser.add_argument('--cpu', metavar='--o', action='store_true',
134
+ help="force using the CPU even if a GPU is available.")
135
+ parser.add_argument('--version', metavar='--v',
136
+ help='shows the current version of livermask.', version=version)
137
+ ret = parser.parse_args(sys.argv[1:]); print(ret)
138
 
139
+ # fix paths
140
+ ret.input = ret.input.replace("\\", "/")
141
+ ret.output = ret.output.replace("\\", "/")
142
 
143
+ func(*vars(ret).values())
144
 
145
 
146
  if __name__ == "__main__":
147
+ main()
setup.py CHANGED
@@ -20,8 +20,8 @@ setuptools.setup(
20
  ]
21
  },
22
  install_requires=[
23
- 'tensorflow==1.13.1',
24
- 'numpy',
25
  'scipy',
26
  'tqdm',
27
  'nibabel',
 
20
  ]
21
  },
22
  install_requires=[
23
+ 'numpy'
24
+ 'tensorflow==2.6',
25
  'scipy',
26
  'tqdm',
27
  'nibabel',