andreped commited on
Commit
8a35a57
·
1 Parent(s): 79866b0

added batch mode. Can now provide directory of CTs/.nii files to be predicted on. Also refactored build workflow

Browse files
.github/workflows/build.yaml CHANGED
@@ -34,10 +34,7 @@ jobs:
34
  run: pip install wheel setuptools
35
 
36
  - name: Build wheel
37
- run: |
38
- python setup.py bdist_wheel --universal
39
- cd dist
40
- ls
41
 
42
  - name: Install program for ${{matrix.TARGET}}
43
  run: ${{matrix.CMD_BUILD}}
 
34
  run: pip install wheel setuptools
35
 
36
  - name: Build wheel
37
+ run: python setup.py bdist_wheel --universal
 
 
 
38
 
39
  - name: Install program for ${{matrix.TARGET}}
40
  run: ${{matrix.CMD_BUILD}}
livermask/livermask.py CHANGED
@@ -12,6 +12,7 @@ import warnings
12
  import argparse
13
  import pkg_resources
14
  import tensorflow as tf
 
15
 
16
 
17
  os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' # due to this: https://github.com/tensorflow/tensorflow/issues/35029
@@ -38,7 +39,17 @@ def get_model(output):
38
  md5 = "ef5a6dfb794b39bea03f5496a9a49d4d"
39
  gdown.cached_download(url, output, md5=md5) #, postprocess=gdown.extractall)
40
 
41
- def func(path, output, cpu):
 
 
 
 
 
 
 
 
 
 
42
  cwd = "/".join(os.path.realpath(__file__).replace("\\", "/").split("/")[:-1]) + "/"
43
  name = cwd + "model.h5"
44
 
@@ -48,83 +59,97 @@ def func(path, output, cpu):
48
  # load model
49
  model = load_model(name, compile=False)
50
 
51
- print("preprocessing...")
52
- nib_volume = nib.load(path)
53
- new_spacing = [1., 1., 1.]
54
- resampled_volume = resample_to_output(nib_volume, new_spacing, order=1)
55
- data = resampled_volume.get_data().astype('float32')
56
-
57
- curr_shape = data.shape
58
-
59
- # resize to get (512, 512) output images
60
- img_size = 512
61
- data = zoom(data, [img_size / data.shape[0], img_size / data.shape[1], 1.0], order=1)
62
-
63
- # intensity normalization
64
- intensity_clipping_range = [-150, 250] # HU clipping limits (Pravdaray's configs)
65
- data = intensity_normalization(volume=data, intensity_clipping_range=intensity_clipping_range)
66
-
67
- # fix orientation
68
- data = np.rot90(data, k=1, axes=(0, 1))
69
- data = np.flip(data, axis=0)
70
-
71
- print("predicting...")
72
- # predict on data
73
- pred = np.zeros_like(data).astype(np.float32)
74
- for i in tqdm(range(data.shape[-1]), "pred: "):
75
- pred[..., i] = model.predict(np.expand_dims(np.expand_dims(np.expand_dims(data[..., i], axis=0), axis=-1), axis=0))[0, ..., 1]
76
- del data
77
-
78
- # threshold
79
- pred = (pred >= 0.4).astype(int)
80
-
81
- # fix orientation back
82
- pred = np.flip(pred, axis=0)
83
- pred = np.rot90(pred, k=-1, axes=(0, 1))
84
-
85
- print("resize back...")
86
- # resize back from 512x512
87
- pred = zoom(pred, [curr_shape[0] / img_size, curr_shape[1] / img_size, 1.0], order=1)
88
- pred = (pred >= 0.5).astype(np.float32)
89
-
90
- print("morphological post-processing...")
91
- # morpological post-processing
92
- # 1) first erode
93
- pred = binary_erosion(pred.astype(bool), ball(3)).astype(np.float32)
94
-
95
- # 2) keep only largest connected component
96
- labels = label(pred)
97
- regions = regionprops(labels)
98
- area_sizes = []
99
- for region in regions:
100
- area_sizes.append([region.label, region.area])
101
- area_sizes = np.array(area_sizes)
102
- tmp = np.zeros_like(pred)
103
- tmp[labels == area_sizes[np.argmax(area_sizes[:, 1]), 0]] = 1
104
- pred = tmp.copy()
105
- del tmp, labels, regions, area_sizes
106
-
107
- # 3) dilate
108
- pred = binary_dilation(pred.astype(bool), ball(3))
109
-
110
- # 4) remove small holes
111
- pred = remove_small_holes(pred.astype(bool), area_threshold=0.001*np.prod(pred.shape)).astype(np.float32)
112
-
113
- print("saving...")
114
- pred = pred.astype(np.uint8)
115
- img = nib.Nifti1Image(pred, affine=resampled_volume.affine)
116
- resampled_lab = resample_from_to(img, nib_volume, order=0)
117
- nib.save(resampled_lab, output)
118
-
 
 
 
 
 
 
 
 
 
 
 
 
119
 
120
  def main():
121
  parser = argparse.ArgumentParser()
122
  parser.add_argument('--input', metavar='--i', type=str, nargs='?',
123
- help="set path of which image to use.")
124
  parser.add_argument('--output', metavar='--o', type=str, nargs='?',
125
  help="set path to store the output.")
126
  parser.add_argument('--cpu', action='store_true',
127
  help="force using the CPU even if a GPU is available.")
 
 
128
  ret = parser.parse_args(sys.argv[1:]); print(ret)
129
 
130
  if ret.cpu:
@@ -148,10 +173,10 @@ def main():
148
  raise ValueError("Please, provide an input.")
149
  if ret.output is None:
150
  raise ValueError("Please, provide an output.")
151
- if not ret.input.endswith(".nii"):
152
- raise ValueError("Image provided is not in the supported '.nii' format.")
153
- if not ret.output.endswith(".nii"):
154
- raise ValueError("Output name set is not in the supported '.nii' format.")
155
 
156
  # fix paths
157
  ret.input = ret.input.replace("\\", "/")
 
12
  import argparse
13
  import pkg_resources
14
  import tensorflow as tf
15
+ import logging as log
16
 
17
 
18
  os.environ['TF_FORCE_GPU_ALLOW_GROWTH'] = 'true' # due to this: https://github.com/tensorflow/tensorflow/issues/35029
 
39
  md5 = "ef5a6dfb794b39bea03f5496a9a49d4d"
40
  gdown.cached_download(url, output, md5=md5) #, postprocess=gdown.extractall)
41
 
42
+ def verboseHandler(verbose):
43
+ if verbose:
44
+ log.basicConfig(format="%(levelname)s: %(message)s", level=log.DEBUG)
45
+ log.info("Verbose output.")
46
+ else:
47
+ log.basicConfig(format="%(levelname)s: %(message)s")
48
+
49
+ def func(path, output, cpu, verbose):
50
+ # enable verbose or not
51
+ verboseHandler(verbose)
52
+
53
  cwd = "/".join(os.path.realpath(__file__).replace("\\", "/").split("/")[:-1]) + "/"
54
  name = cwd + "model.h5"
55
 
 
59
  # load model
60
  model = load_model(name, compile=False)
61
 
62
+ if not os.path.isdir(path):
63
+ paths = [path]
64
+ else:
65
+ paths = [path + "/" + p for p in os.listdir(path)]
66
+
67
+ multiple_flag = len(paths) > 1
68
+ if multiple_flag:
69
+ os.makedirs(output + "/", exist_ok=True)
70
+
71
+ for curr in tqdm(paths, "CT:"):
72
+ log.info("preprocessing...")
73
+ nib_volume = nib.load(curr)
74
+ new_spacing = [1., 1., 1.]
75
+ resampled_volume = resample_to_output(nib_volume, new_spacing, order=1)
76
+ data = resampled_volume.get_data().astype('float32')
77
+
78
+ curr_shape = data.shape
79
+
80
+ # resize to get (512, 512) output images
81
+ img_size = 512
82
+ data = zoom(data, [img_size / data.shape[0], img_size / data.shape[1], 1.0], order=1)
83
+
84
+ # intensity normalization
85
+ intensity_clipping_range = [-150, 250] # HU clipping limits (Pravdaray's configs)
86
+ data = intensity_normalization(volume=data, intensity_clipping_range=intensity_clipping_range)
87
+
88
+ # fix orientation
89
+ data = np.rot90(data, k=1, axes=(0, 1))
90
+ data = np.flip(data, axis=0)
91
+
92
+ log.info("predicting...")
93
+ # predict on data
94
+ pred = np.zeros_like(data).astype(np.float32)
95
+ for i in tqdm(range(data.shape[-1]), "pred: ", disable=not verbose):
96
+ pred[..., i] = model.predict(np.expand_dims(np.expand_dims(np.expand_dims(data[..., i], axis=0), axis=-1), axis=0))[0, ..., 1]
97
+ del data
98
+
99
+ # threshold
100
+ pred = (pred >= 0.4).astype(int)
101
+
102
+ # fix orientation back
103
+ pred = np.flip(pred, axis=0)
104
+ pred = np.rot90(pred, k=-1, axes=(0, 1))
105
+
106
+ log.info("resize back...")
107
+ # resize back from 512x512
108
+ pred = zoom(pred, [curr_shape[0] / img_size, curr_shape[1] / img_size, 1.0], order=1)
109
+ pred = (pred >= 0.5).astype(np.float32)
110
+
111
+ log.info("morphological post-processing...")
112
+ # morpological post-processing
113
+ # 1) first erode
114
+ pred = binary_erosion(pred.astype(bool), ball(3)).astype(np.float32)
115
+
116
+ # 2) keep only largest connected component
117
+ labels = label(pred)
118
+ regions = regionprops(labels)
119
+ area_sizes = []
120
+ for region in regions:
121
+ area_sizes.append([region.label, region.area])
122
+ area_sizes = np.array(area_sizes)
123
+ tmp = np.zeros_like(pred)
124
+ tmp[labels == area_sizes[np.argmax(area_sizes[:, 1]), 0]] = 1
125
+ pred = tmp.copy()
126
+ del tmp, labels, regions, area_sizes
127
+
128
+ # 3) dilate
129
+ pred = binary_dilation(pred.astype(bool), ball(3))
130
+
131
+ # 4) remove small holes
132
+ pred = remove_small_holes(pred.astype(bool), area_threshold=0.001*np.prod(pred.shape)).astype(np.float32)
133
+
134
+ log.info("saving...")
135
+ pred = pred.astype(np.uint8)
136
+ img = nib.Nifti1Image(pred, affine=resampled_volume.affine)
137
+ resampled_lab = resample_from_to(img, nib_volume, order=0)
138
+ if multiple_flag:
139
+ nib.save(resampled_lab, output + "/" + curr.split("/")[-1].split(".")[0] + "-livermask" + ".nii")
140
+ else:
141
+ nib.save(resampled_lab, output + ".nii")
142
 
143
  def main():
144
  parser = argparse.ArgumentParser()
145
  parser.add_argument('--input', metavar='--i', type=str, nargs='?',
146
+ help="set path of which image(s) to use.")
147
  parser.add_argument('--output', metavar='--o', type=str, nargs='?',
148
  help="set path to store the output.")
149
  parser.add_argument('--cpu', action='store_true',
150
  help="force using the CPU even if a GPU is available.")
151
+ parser.add_argument('--verbose', action='store_true',
152
+ help="enable verbose.")
153
  ret = parser.parse_args(sys.argv[1:]); print(ret)
154
 
155
  if ret.cpu:
 
173
  raise ValueError("Please, provide an input.")
174
  if ret.output is None:
175
  raise ValueError("Please, provide an output.")
176
+ if not os.path.isdir(ret.input) and not ret.input.endswith(".nii"):
177
+ raise ValueError("Input path provided is not in the supported '.nii' format or a directory.")
178
+ if ret.output.endswith(".nii") or not os.path.isdir(ret.output) or "." in ret.output.split("/")[-1]:
179
+ raise ValueError("Output path provided is not a directory or a name (remove *.nii format from name).")
180
 
181
  # fix paths
182
  ret.input = ret.input.replace("\\", "/")