andreped commited on
Commit
13ee8c5
·
1 Parent(s): d9e0b6b

Added example CT to demo

Browse files
Files changed (5) hide show
  1. .gitignore +1 -1
  2. Dockerfile +3 -0
  3. demo/app.py +5 -2
  4. demo/src/compute.py +1 -2
  5. demo/src/gui.py +22 -4
.gitignore CHANGED
@@ -13,4 +13,4 @@ gradio_cached_examples/
13
  flagged/
14
  files/
15
  *.csv
16
- *.obj
 
13
  flagged/
14
  files/
15
  *.csv
16
+ *.obj
Dockerfile CHANGED
@@ -53,4 +53,7 @@ COPY --chown=user . $HOME/app
53
  # Download pretrained parenchyma model
54
  RUN wget "https://github.com/andreped/livermask/releases/download/trained-models-v1/model.h5"
55
 
 
 
 
56
  CMD ["python3.7", "demo/app.py"]
 
53
  # Download pretrained parenchyma model
54
  RUN wget "https://github.com/andreped/livermask/releases/download/trained-models-v1/model.h5"
55
 
56
+ # Download test sample
57
+ RUN python3.7 -m pip install gdown && gdown "https://drive.google.com/uc?id=1shjSrFjS4PHE5sTku30PZTLPZpGu24o3"
58
+
59
  CMD ["python3.7", "demo/app.py"]
demo/app.py CHANGED
@@ -4,11 +4,14 @@ from src.gui import WebUI
4
  def main():
5
  print("Launching demo...")
6
 
7
- model_name = "/home/user/app/model.h5" # "/Users/andreped/workspace/livermask/model.h5"
 
 
 
8
  class_name = "parenchyma"
9
 
10
  # initialize and run app
11
- app = WebUI(model_name=model_name, class_name=class_name)
12
  app.run()
13
 
14
 
 
4
  def main():
5
  print("Launching demo...")
6
 
7
+ cwd = "/Users/andreped/workspace/livermask/" # local testing -> macOS
8
+ # cwd = "/home/user/app/" # production -> docker
9
+
10
+ model_name = "model.h5" # assumed to lie in `cwd` directory
11
  class_name = "parenchyma"
12
 
13
  # initialize and run app
14
+ app = WebUI(model_name=model_name, class_name=class_name, cwd=cwd)
15
  app.run()
16
 
17
 
demo/src/compute.py CHANGED
@@ -1,6 +1,5 @@
1
 
2
 
3
- def run_model(input_path, model_name="/home/user/app/model.h5"):
4
  from livermask.utils.run import run_analysis
5
  run_analysis(cpu=True, extension='.nii', path=input_path, output='prediction', verbose=True, vessels=False, name=model_name, mp_enabled=False)
6
-
 
1
 
2
 
3
+ def run_model(input_path, model_name):
4
  from livermask.utils.run import run_analysis
5
  run_analysis(cpu=True, extension='.nii', path=input_path, output='prediction', verbose=True, vessels=False, name=model_name, mp_enabled=False)
 
demo/src/gui.py CHANGED
@@ -5,15 +5,17 @@ from .convert import nifti_to_glb
5
 
6
 
7
  class WebUI:
8
- def __init__(self, model_name, class_name):
9
  # global states
10
  self.images = []
11
  self.pred_images = []
12
 
 
13
  self.nb_slider_items = 100
14
 
15
  self.model_name = model_name
16
  self.class_name = class_name
 
17
 
18
  # define widgets not to be rendered immediantly, but later on
19
  self.slider = gr.Slider(1, self.nb_slider_items, value=1, step=1, label="Which 2D slice to show")
@@ -29,7 +31,7 @@ class WebUI:
29
  def upload_file(self, file):
30
  return file.name
31
 
32
- def load_mesh(self, mesh_file_name, model_name="/home/user/app/model.h5"):
33
  path = mesh_file_name.name
34
  run_model(path, model_name)
35
  nifti_to_glb("prediction-livermask.nii")
@@ -48,11 +50,27 @@ class WebUI:
48
  with gr.Blocks() as demo:
49
 
50
  with gr.Row().style(equal_height=True):
51
- file_output = gr.File(file_types=[".nii", ".nii.nz"], file_count="single").style(full_width=False, size="sm")
 
 
 
52
  file_output.upload(self.upload_file, file_output, file_output)
53
 
54
  run_btn = gr.Button("Run analysis").style(full_width=False, size="sm")
55
- run_btn.click(fn=lambda x: self.load_mesh(x, model_name=self.model_name), inputs=file_output, outputs=self.volume_renderer)
 
 
 
 
 
 
 
 
 
 
 
 
 
56
 
57
  with gr.Row().style(equal_height=True):
58
  with gr.Box():
 
5
 
6
 
7
  class WebUI:
8
+ def __init__(self, model_name:str = None, class_name:str = None, cwd:str = None):
9
  # global states
10
  self.images = []
11
  self.pred_images = []
12
 
13
+ # @TODO: This should be dynamically set based on chosen volume size
14
  self.nb_slider_items = 100
15
 
16
  self.model_name = model_name
17
  self.class_name = class_name
18
+ self.cwd = cwd
19
 
20
  # define widgets not to be rendered immediantly, but later on
21
  self.slider = gr.Slider(1, self.nb_slider_items, value=1, step=1, label="Which 2D slice to show")
 
31
  def upload_file(self, file):
32
  return file.name
33
 
34
+ def load_mesh(self, mesh_file_name, model_name):
35
  path = mesh_file_name.name
36
  run_model(path, model_name)
37
  nifti_to_glb("prediction-livermask.nii")
 
50
  with gr.Blocks() as demo:
51
 
52
  with gr.Row().style(equal_height=True):
53
+ file_output = gr.File(
54
+ file_types=[".nii", ".nii.nz"],
55
+ file_count="single"
56
+ ).style(full_width=False, size="sm")
57
  file_output.upload(self.upload_file, file_output, file_output)
58
 
59
  run_btn = gr.Button("Run analysis").style(full_width=False, size="sm")
60
+ run_btn.click(
61
+ fn=lambda x: self.load_mesh(x, model_name=self.cwd + self.model_name),
62
+ inputs=file_output,
63
+ outputs=self.volume_renderer
64
+ )
65
+
66
+ with gr.Row().style(equal_height=True):
67
+ gr.Examples(
68
+ examples=[self.cwd + "test-volume.nii"],
69
+ inputs=file_output,
70
+ outputs=file_output,
71
+ fn=self.upload_file,
72
+ cache_examples=True,
73
+ )
74
 
75
  with gr.Row().style(equal_height=True):
76
  with gr.Box():