|
import gradio as gr |
|
from .utils import load_ct_to_numpy, load_pred_volume_to_numpy |
|
from .compute import run_model |
|
from .convert import nifti_to_glb |
|
|
|
|
|
class WebUI: |
|
def __init__(self, model_name:str = None, class_name:str = None, cwd:str = None): |
|
|
|
self.images = [] |
|
self.pred_images = [] |
|
|
|
|
|
self.nb_slider_items = 100 |
|
|
|
self.model_name = model_name |
|
self.class_name = class_name |
|
self.cwd = cwd |
|
|
|
|
|
self.slider = gr.Slider(1, self.nb_slider_items, value=1, step=1, label="Which 2D slice to show") |
|
self.volume_renderer = gr.Model3D( |
|
clear_color=[0.0, 0.0, 0.0, 0.0], |
|
label="3D Model", |
|
visible=True, |
|
elem_id="model-3d", |
|
).style(height=512) |
|
|
|
def combine_ct_and_seg(self, img, pred): |
|
return (img, [(pred, self.class_name)]) |
|
|
|
def upload_file(self, file): |
|
return file.name |
|
|
|
def load_mesh(self, mesh_file_name, model_name): |
|
path = mesh_file_name.name |
|
run_model(path, model_name) |
|
nifti_to_glb("prediction-livermask.nii") |
|
self.images = load_ct_to_numpy(path) |
|
self.pred_images = load_pred_volume_to_numpy("./prediction-livermask.nii") |
|
self.slider = self.slider.update(value=2) |
|
return "./prediction.obj" |
|
|
|
def get_img_pred_pair(self, k): |
|
k = int(k) - 1 |
|
out = [gr.AnnotatedImage.update(visible=False)] * self.nb_slider_items |
|
out[k] = gr.AnnotatedImage.update(self.combine_ct_and_seg(self.images[k], self.pred_images[k]), visible=True) |
|
return out |
|
|
|
def run(self): |
|
css=""" |
|
#model-3d { |
|
height: 512px; |
|
} |
|
#model-2d { |
|
height: 512px; |
|
margin: auto; |
|
} |
|
""" |
|
with gr.Blocks(css=css) as demo: |
|
|
|
with gr.Row(): |
|
file_output = gr.File( |
|
file_types=[".nii", ".nii.nz"], |
|
file_count="single" |
|
).style(full_width=False, size="sm") |
|
file_output.upload(self.upload_file, file_output, file_output) |
|
|
|
run_btn = gr.Button("Run analysis").style(full_width=False, size="sm") |
|
run_btn.click( |
|
fn=lambda x: self.load_mesh(x, model_name=self.cwd + self.model_name), |
|
inputs=file_output, |
|
outputs=self.volume_renderer |
|
) |
|
|
|
with gr.Row(): |
|
gr.Examples( |
|
examples=[self.cwd + "test-volume.nii"], |
|
inputs=file_output, |
|
outputs=file_output, |
|
fn=self.upload_file, |
|
cache_examples=True, |
|
) |
|
|
|
with gr.Row(): |
|
with gr.Box(): |
|
image_boxes = [] |
|
for i in range(self.nb_slider_items): |
|
visibility = True if i == 1 else False |
|
t = gr.AnnotatedImage(visible=visibility, elem_id="model-2d")\ |
|
.style(color_map={self.class_name: "#ffae00"}, height=512, width=512) |
|
image_boxes.append(t) |
|
|
|
self.slider.change(self.get_img_pred_pair, self.slider, image_boxes) |
|
|
|
with gr.Box(): |
|
self.volume_renderer.render() |
|
|
|
with gr.Row(): |
|
self.slider.render() |
|
|
|
|
|
|
|
demo.queue().launch(server_name="0.0.0.0", server_port=7860, share=True) |
|
|