MuseVSpace / MuseV /musev /models /transformer_2d.py
anchorxia's picture
add musev
96d7ad8
# Copyright 2023 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import annotations
from dataclasses import dataclass
from typing import Any, Dict, List, Literal, Optional
import logging
from einops import rearrange
import torch
import torch.nn.functional as F
from torch import nn
from diffusers.models.transformer_2d import (
Transformer2DModelOutput,
Transformer2DModel as DiffusersTransformer2DModel,
)
from diffusers.configuration_utils import ConfigMixin, register_to_config
from diffusers.models.embeddings import ImagePositionalEmbeddings
from diffusers.utils import BaseOutput, deprecate
from diffusers.models.attention import (
BasicTransformerBlock as DiffusersBasicTransformerBlock,
)
from diffusers.models.embeddings import PatchEmbed
from diffusers.models.lora import LoRACompatibleConv, LoRACompatibleLinear
from diffusers.models.modeling_utils import ModelMixin
from diffusers.utils.constants import USE_PEFT_BACKEND
from .attention import BasicTransformerBlock
logger = logging.getLogger(__name__)
# 本部分 与 diffusers/models/transformer_2d.py 几乎一样
# 更新部分
# 1. 替换自定义 BasicTransformerBlock 类
# 2. 在forward 里增加了 self_attn_block_embs 用于 提取 self_attn 中的emb
# this module is same as diffusers/models/transformer_2d.py. The update part is
# 1 redefine BasicTransformerBlock
# 2. add self_attn_block_embs in forward to extract emb from self_attn
class Transformer2DModel(DiffusersTransformer2DModel):
"""
A 2D Transformer model for image-like data.
Parameters:
num_attention_heads (`int`, *optional*, defaults to 16): The number of heads to use for multi-head attention.
attention_head_dim (`int`, *optional*, defaults to 88): The number of channels in each head.
in_channels (`int`, *optional*):
The number of channels in the input and output (specify if the input is **continuous**).
num_layers (`int`, *optional*, defaults to 1): The number of layers of Transformer blocks to use.
dropout (`float`, *optional*, defaults to 0.0): The dropout probability to use.
cross_attention_dim (`int`, *optional*): The number of `encoder_hidden_states` dimensions to use.
sample_size (`int`, *optional*): The width of the latent images (specify if the input is **discrete**).
This is fixed during training since it is used to learn a number of position embeddings.
num_vector_embeds (`int`, *optional*):
The number of classes of the vector embeddings of the latent pixels (specify if the input is **discrete**).
Includes the class for the masked latent pixel.
activation_fn (`str`, *optional*, defaults to `"geglu"`): Activation function to use in feed-forward.
num_embeds_ada_norm ( `int`, *optional*):
The number of diffusion steps used during training. Pass if at least one of the norm_layers is
`AdaLayerNorm`. This is fixed during training since it is used to learn a number of embeddings that are
added to the hidden states.
During inference, you can denoise for up to but not more steps than `num_embeds_ada_norm`.
attention_bias (`bool`, *optional*):
Configure if the `TransformerBlocks` attention should contain a bias parameter.
"""
@register_to_config
def __init__(
self,
num_attention_heads: int = 16,
attention_head_dim: int = 88,
in_channels: int | None = None,
out_channels: int | None = None,
num_layers: int = 1,
dropout: float = 0,
norm_num_groups: int = 32,
cross_attention_dim: int | None = None,
attention_bias: bool = False,
sample_size: int | None = None,
num_vector_embeds: int | None = None,
patch_size: int | None = None,
activation_fn: str = "geglu",
num_embeds_ada_norm: int | None = None,
use_linear_projection: bool = False,
only_cross_attention: bool = False,
double_self_attention: bool = False,
upcast_attention: bool = False,
norm_type: str = "layer_norm",
norm_elementwise_affine: bool = True,
attention_type: str = "default",
cross_attn_temporal_cond: bool = False,
ip_adapter_cross_attn: bool = False,
need_t2i_facein: bool = False,
need_t2i_ip_adapter_face: bool = False,
image_scale: float = 1.0,
):
super().__init__(
num_attention_heads,
attention_head_dim,
in_channels,
out_channels,
num_layers,
dropout,
norm_num_groups,
cross_attention_dim,
attention_bias,
sample_size,
num_vector_embeds,
patch_size,
activation_fn,
num_embeds_ada_norm,
use_linear_projection,
only_cross_attention,
double_self_attention,
upcast_attention,
norm_type,
norm_elementwise_affine,
attention_type,
)
inner_dim = num_attention_heads * attention_head_dim
self.transformer_blocks = nn.ModuleList(
[
BasicTransformerBlock(
inner_dim,
num_attention_heads,
attention_head_dim,
dropout=dropout,
cross_attention_dim=cross_attention_dim,
activation_fn=activation_fn,
num_embeds_ada_norm=num_embeds_ada_norm,
attention_bias=attention_bias,
only_cross_attention=only_cross_attention,
double_self_attention=double_self_attention,
upcast_attention=upcast_attention,
norm_type=norm_type,
norm_elementwise_affine=norm_elementwise_affine,
attention_type=attention_type,
cross_attn_temporal_cond=cross_attn_temporal_cond,
ip_adapter_cross_attn=ip_adapter_cross_attn,
need_t2i_facein=need_t2i_facein,
need_t2i_ip_adapter_face=need_t2i_ip_adapter_face,
image_scale=image_scale,
)
for d in range(num_layers)
]
)
self.num_layers = num_layers
self.cross_attn_temporal_cond = cross_attn_temporal_cond
self.ip_adapter_cross_attn = ip_adapter_cross_attn
self.need_t2i_facein = need_t2i_facein
self.need_t2i_ip_adapter_face = need_t2i_ip_adapter_face
self.image_scale = image_scale
self.print_idx = 0
def forward(
self,
hidden_states: torch.Tensor,
encoder_hidden_states: Optional[torch.Tensor] = None,
timestep: Optional[torch.LongTensor] = None,
added_cond_kwargs: Dict[str, torch.Tensor] = None,
class_labels: Optional[torch.LongTensor] = None,
cross_attention_kwargs: Dict[str, Any] = None,
attention_mask: Optional[torch.Tensor] = None,
encoder_attention_mask: Optional[torch.Tensor] = None,
self_attn_block_embs: Optional[List[torch.Tensor]] = None,
self_attn_block_embs_mode: Literal["read", "write"] = "write",
return_dict: bool = True,
):
"""
The [`Transformer2DModel`] forward method.
Args:
hidden_states (`torch.LongTensor` of shape `(batch size, num latent pixels)` if discrete, `torch.FloatTensor` of shape `(batch size, channel, height, width)` if continuous):
Input `hidden_states`.
encoder_hidden_states ( `torch.FloatTensor` of shape `(batch size, sequence len, embed dims)`, *optional*):
Conditional embeddings for cross attention layer. If not given, cross-attention defaults to
self-attention.
timestep ( `torch.LongTensor`, *optional*):
Used to indicate denoising step. Optional timestep to be applied as an embedding in `AdaLayerNorm`.
class_labels ( `torch.LongTensor` of shape `(batch size, num classes)`, *optional*):
Used to indicate class labels conditioning. Optional class labels to be applied as an embedding in
`AdaLayerZeroNorm`.
cross_attention_kwargs ( `Dict[str, Any]`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
attention_mask ( `torch.Tensor`, *optional*):
An attention mask of shape `(batch, key_tokens)` is applied to `encoder_hidden_states`. If `1` the mask
is kept, otherwise if `0` it is discarded. Mask will be converted into a bias, which adds large
negative values to the attention scores corresponding to "discard" tokens.
encoder_attention_mask ( `torch.Tensor`, *optional*):
Cross-attention mask applied to `encoder_hidden_states`. Two formats supported:
* Mask `(batch, sequence_length)` True = keep, False = discard.
* Bias `(batch, 1, sequence_length)` 0 = keep, -10000 = discard.
If `ndim == 2`: will be interpreted as a mask, then converted into a bias consistent with the format
above. This bias will be added to the cross-attention scores.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`~models.unet_2d_condition.UNet2DConditionOutput`] instead of a plain
tuple.
Returns:
If `return_dict` is True, an [`~models.transformer_2d.Transformer2DModelOutput`] is returned, otherwise a
`tuple` where the first element is the sample tensor.
"""
# ensure attention_mask is a bias, and give it a singleton query_tokens dimension.
# we may have done this conversion already, e.g. if we came here via UNet2DConditionModel#forward.
# we can tell by counting dims; if ndim == 2: it's a mask rather than a bias.
# expects mask of shape:
# [batch, key_tokens]
# adds singleton query_tokens dimension:
# [batch, 1, key_tokens]
# this helps to broadcast it as a bias over attention scores, which will be in one of the following shapes:
# [batch, heads, query_tokens, key_tokens] (e.g. torch sdp attn)
# [batch * heads, query_tokens, key_tokens] (e.g. xformers or classic attn)
if attention_mask is not None and attention_mask.ndim == 2:
# assume that mask is expressed as:
# (1 = keep, 0 = discard)
# convert mask into a bias that can be added to attention scores:
# (keep = +0, discard = -10000.0)
attention_mask = (1 - attention_mask.to(hidden_states.dtype)) * -10000.0
attention_mask = attention_mask.unsqueeze(1)
# convert encoder_attention_mask to a bias the same way we do for attention_mask
if encoder_attention_mask is not None and encoder_attention_mask.ndim == 2:
encoder_attention_mask = (
1 - encoder_attention_mask.to(hidden_states.dtype)
) * -10000.0
encoder_attention_mask = encoder_attention_mask.unsqueeze(1)
# Retrieve lora scale.
lora_scale = (
cross_attention_kwargs.get("scale", 1.0)
if cross_attention_kwargs is not None
else 1.0
)
# 1. Input
if self.is_input_continuous:
batch, _, height, width = hidden_states.shape
residual = hidden_states
hidden_states = self.norm(hidden_states)
if not self.use_linear_projection:
hidden_states = (
self.proj_in(hidden_states, scale=lora_scale)
if not USE_PEFT_BACKEND
else self.proj_in(hidden_states)
)
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
else:
inner_dim = hidden_states.shape[1]
hidden_states = hidden_states.permute(0, 2, 3, 1).reshape(
batch, height * width, inner_dim
)
hidden_states = (
self.proj_in(hidden_states, scale=lora_scale)
if not USE_PEFT_BACKEND
else self.proj_in(hidden_states)
)
elif self.is_input_vectorized:
hidden_states = self.latent_image_embedding(hidden_states)
elif self.is_input_patches:
height, width = (
hidden_states.shape[-2] // self.patch_size,
hidden_states.shape[-1] // self.patch_size,
)
hidden_states = self.pos_embed(hidden_states)
if self.adaln_single is not None:
if self.use_additional_conditions and added_cond_kwargs is None:
raise ValueError(
"`added_cond_kwargs` cannot be None when using additional conditions for `adaln_single`."
)
batch_size = hidden_states.shape[0]
timestep, embedded_timestep = self.adaln_single(
timestep,
added_cond_kwargs,
batch_size=batch_size,
hidden_dtype=hidden_states.dtype,
)
# 2. Blocks
if self.caption_projection is not None:
batch_size = hidden_states.shape[0]
encoder_hidden_states = self.caption_projection(encoder_hidden_states)
encoder_hidden_states = encoder_hidden_states.view(
batch_size, -1, hidden_states.shape[-1]
)
for block in self.transformer_blocks:
if self.training and self.gradient_checkpointing:
hidden_states = torch.utils.checkpoint.checkpoint(
block,
hidden_states,
attention_mask,
encoder_hidden_states,
encoder_attention_mask,
timestep,
cross_attention_kwargs,
class_labels,
self_attn_block_embs,
self_attn_block_embs_mode,
use_reentrant=False,
)
else:
hidden_states = block(
hidden_states,
attention_mask=attention_mask,
encoder_hidden_states=encoder_hidden_states,
encoder_attention_mask=encoder_attention_mask,
timestep=timestep,
cross_attention_kwargs=cross_attention_kwargs,
class_labels=class_labels,
self_attn_block_embs=self_attn_block_embs,
self_attn_block_embs_mode=self_attn_block_embs_mode,
)
# 将 转换 self_attn_emb的尺寸
if (
self_attn_block_embs is not None
and self_attn_block_embs_mode.lower() == "write"
):
self_attn_idx = block.spatial_self_attn_idx
if self.print_idx == 0:
logger.debug(
f"self_attn_block_embs, num={len(self_attn_block_embs)}, before, shape={self_attn_block_embs[self_attn_idx].shape}, height={height}, width={width}"
)
self_attn_block_embs[self_attn_idx] = rearrange(
self_attn_block_embs[self_attn_idx],
"bt (h w) c->bt c h w",
h=height,
w=width,
)
if self.print_idx == 0:
logger.debug(
f"self_attn_block_embs, num={len(self_attn_block_embs)}, after ,shape={self_attn_block_embs[self_attn_idx].shape}, height={height}, width={width}"
)
if self.proj_out is None:
return hidden_states
# 3. Output
if self.is_input_continuous:
if not self.use_linear_projection:
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
hidden_states = (
self.proj_out(hidden_states, scale=lora_scale)
if not USE_PEFT_BACKEND
else self.proj_out(hidden_states)
)
else:
hidden_states = (
self.proj_out(hidden_states, scale=lora_scale)
if not USE_PEFT_BACKEND
else self.proj_out(hidden_states)
)
hidden_states = (
hidden_states.reshape(batch, height, width, inner_dim)
.permute(0, 3, 1, 2)
.contiguous()
)
output = hidden_states + residual
elif self.is_input_vectorized:
hidden_states = self.norm_out(hidden_states)
logits = self.out(hidden_states)
# (batch, self.num_vector_embeds - 1, self.num_latent_pixels)
logits = logits.permute(0, 2, 1)
# log(p(x_0))
output = F.log_softmax(logits.double(), dim=1).float()
if self.is_input_patches:
if self.config.norm_type != "ada_norm_single":
conditioning = self.transformer_blocks[0].norm1.emb(
timestep, class_labels, hidden_dtype=hidden_states.dtype
)
shift, scale = self.proj_out_1(F.silu(conditioning)).chunk(2, dim=1)
hidden_states = (
self.norm_out(hidden_states) * (1 + scale[:, None]) + shift[:, None]
)
hidden_states = self.proj_out_2(hidden_states)
elif self.config.norm_type == "ada_norm_single":
shift, scale = (
self.scale_shift_table[None] + embedded_timestep[:, None]
).chunk(2, dim=1)
hidden_states = self.norm_out(hidden_states)
# Modulation
hidden_states = hidden_states * (1 + scale) + shift
hidden_states = self.proj_out(hidden_states)
hidden_states = hidden_states.squeeze(1)
# unpatchify
if self.adaln_single is None:
height = width = int(hidden_states.shape[1] ** 0.5)
hidden_states = hidden_states.reshape(
shape=(
-1,
height,
width,
self.patch_size,
self.patch_size,
self.out_channels,
)
)
hidden_states = torch.einsum("nhwpqc->nchpwq", hidden_states)
output = hidden_states.reshape(
shape=(
-1,
self.out_channels,
height * self.patch_size,
width * self.patch_size,
)
)
self.print_idx += 1
if not return_dict:
return (output,)
return Transformer2DModelOutput(sample=output)