MuseVSpace / MuseV /musev /models /controlnet.py
anchorxia's picture
add musev
96d7ad8
raw
history blame
14.9 kB
from typing import Any, Callable, Dict, List, Literal, Optional, Tuple, Union
import warnings
import os
import torch.nn as nn
import torch.nn.functional as F
from diffusers.models.modeling_utils import ModelMixin
import PIL
from einops import rearrange, repeat
import numpy as np
import torch
import torch.nn.init as init
from diffusers.models.controlnet import ControlNetModel
from diffusers.pipelines.controlnet.multicontrolnet import MultiControlNetModel
from diffusers.schedulers.scheduling_utils import KarrasDiffusionSchedulers
from diffusers.utils.torch_utils import is_compiled_module
class ControlnetPredictor(object):
def __init__(self, controlnet_model_path: str, *args, **kwargs):
"""Controlnet 推断函数,用于提取 controlnet backbone的emb,避免训练时重复抽取
Controlnet inference predictor, used to extract the emb of the controlnet backbone to avoid repeated extraction during training
Args:
controlnet_model_path (str): controlnet 模型路径. controlnet model path.
"""
super(ControlnetPredictor, self).__init__(*args, **kwargs)
self.controlnet = ControlNetModel.from_pretrained(
controlnet_model_path,
)
def prepare_image(
self,
image, # b c t h w
width,
height,
batch_size,
num_images_per_prompt,
device,
dtype,
do_classifier_free_guidance=False,
guess_mode=False,
):
if height is None:
height = image.shape[-2]
if width is None:
width = image.shape[-1]
width, height = (
x - x % self.control_image_processor.vae_scale_factor
for x in (width, height)
)
image = rearrange(image, "b c t h w-> (b t) c h w")
image = torch.from_numpy(image).to(dtype=torch.float32) / 255.0
image = (
torch.nn.functional.interpolate(
image,
size=(height, width),
mode="bilinear",
),
)
do_normalize = self.control_image_processor.config.do_normalize
if image.min() < 0:
warnings.warn(
"Passing `image` as torch tensor with value range in [-1,1] is deprecated. The expected value range for image tensor is [0,1] "
f"when passing as pytorch tensor or numpy Array. You passed `image` with value range [{image.min()},{image.max()}]",
FutureWarning,
)
do_normalize = False
if do_normalize:
image = self.control_image_processor.normalize(image)
image_batch_size = image.shape[0]
if image_batch_size == 1:
repeat_by = batch_size
else:
# image batch size is the same as prompt batch size
repeat_by = num_images_per_prompt
image = image.repeat_interleave(repeat_by, dim=0)
image = image.to(device=device, dtype=dtype)
if do_classifier_free_guidance and not guess_mode:
image = torch.cat([image] * 2)
return image
@torch.no_grad()
def __call__(
self,
batch_size: int,
device: str,
dtype: torch.dtype,
timesteps: List[float],
i: int,
scheduler: KarrasDiffusionSchedulers,
prompt_embeds: torch.Tensor,
do_classifier_free_guidance: bool = False,
# 2b co t ho wo
latent_model_input: torch.Tensor = None,
# b co t ho wo
latents: torch.Tensor = None,
# b c t h w
image: Union[
torch.FloatTensor,
PIL.Image.Image,
np.ndarray,
List[torch.FloatTensor],
List[PIL.Image.Image],
List[np.ndarray],
] = None,
# b c t(1) hi wi
controlnet_condition_frames: Optional[torch.FloatTensor] = None,
# b c t ho wo
controlnet_latents: Union[torch.FloatTensor, np.ndarray] = None,
# b c t(1) ho wo
controlnet_condition_latents: Optional[torch.FloatTensor] = None,
height: Optional[int] = None,
width: Optional[int] = None,
num_videos_per_prompt: Optional[int] = 1,
return_dict: bool = True,
controlnet_conditioning_scale: Union[float, List[float]] = 1.0,
guess_mode: bool = False,
control_guidance_start: Union[float, List[float]] = 0.0,
control_guidance_end: Union[float, List[float]] = 1.0,
latent_index: torch.LongTensor = None,
vision_condition_latent_index: torch.LongTensor = None,
**kwargs,
):
assert (
image is None and controlnet_latents is None
), "should set one of image and controlnet_latents"
controlnet = (
self.controlnet._orig_mod
if is_compiled_module(self.controlnet)
else self.controlnet
)
# align format for control guidance
if not isinstance(control_guidance_start, list) and isinstance(
control_guidance_end, list
):
control_guidance_start = len(control_guidance_end) * [
control_guidance_start
]
elif not isinstance(control_guidance_end, list) and isinstance(
control_guidance_start, list
):
control_guidance_end = len(control_guidance_start) * [control_guidance_end]
elif not isinstance(control_guidance_start, list) and not isinstance(
control_guidance_end, list
):
mult = (
len(controlnet.nets)
if isinstance(controlnet, MultiControlNetModel)
else 1
)
control_guidance_start, control_guidance_end = mult * [
control_guidance_start
], mult * [control_guidance_end]
if isinstance(controlnet, MultiControlNetModel) and isinstance(
controlnet_conditioning_scale, float
):
controlnet_conditioning_scale = [controlnet_conditioning_scale] * len(
controlnet.nets
)
global_pool_conditions = (
controlnet.config.global_pool_conditions
if isinstance(controlnet, ControlNetModel)
else controlnet.nets[0].config.global_pool_conditions
)
guess_mode = guess_mode or global_pool_conditions
# 4. Prepare image
if isinstance(controlnet, ControlNetModel):
if (
controlnet_latents is not None
and controlnet_condition_latents is not None
):
if isinstance(controlnet_latents, np.ndarray):
controlnet_latents = torch.from_numpy(controlnet_latents)
if isinstance(controlnet_condition_latents, np.ndarray):
controlnet_condition_latents = torch.from_numpy(
controlnet_condition_latents
)
# TODO:使用index进行concat
controlnet_latents = torch.concat(
[controlnet_condition_latents, controlnet_latents], dim=2
)
if not guess_mode and do_classifier_free_guidance:
controlnet_latents = torch.concat([controlnet_latents] * 2, dim=0)
controlnet_latents = rearrange(
controlnet_latents, "b c t h w->(b t) c h w"
)
controlnet_latents = controlnet_latents.to(device=device, dtype=dtype)
else:
# TODO:使用index进行concat
# TODO: concat with index
if controlnet_condition_frames is not None:
if isinstance(controlnet_condition_frames, np.ndarray):
image = np.concatenate(
[controlnet_condition_frames, image], axis=2
)
image = self.prepare_image(
image=image,
width=width,
height=height,
batch_size=batch_size * num_videos_per_prompt,
num_images_per_prompt=num_videos_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
height, width = image.shape[-2:]
elif isinstance(controlnet, MultiControlNetModel):
images = []
# TODO: 支持直接使用controlnet_latent而不是frames
# TODO: support using controlnet_latent directly instead of frames
if controlnet_latents is not None:
raise NotImplementedError
else:
for i, image_ in enumerate(image):
if controlnet_condition_frames is not None and isinstance(
controlnet_condition_frames, list
):
if isinstance(controlnet_condition_frames[i], np.ndarray):
image_ = np.concatenate(
[controlnet_condition_frames[i], image_], axis=2
)
image_ = self.prepare_image(
image=image_,
width=width,
height=height,
batch_size=batch_size * num_videos_per_prompt,
num_images_per_prompt=num_videos_per_prompt,
device=device,
dtype=controlnet.dtype,
do_classifier_free_guidance=do_classifier_free_guidance,
guess_mode=guess_mode,
)
images.append(image_)
image = images
height, width = image[0].shape[-2:]
else:
assert False
# 7.1 Create tensor stating which controlnets to keep
controlnet_keep = []
for i in range(len(timesteps)):
keeps = [
1.0 - float(i / len(timesteps) < s or (i + 1) / len(timesteps) > e)
for s, e in zip(control_guidance_start, control_guidance_end)
]
controlnet_keep.append(
keeps[0] if isinstance(controlnet, ControlNetModel) else keeps
)
t = timesteps[i]
# controlnet(s) inference
if guess_mode and do_classifier_free_guidance:
# Infer ControlNet only for the conditional batch.
control_model_input = latents
control_model_input = scheduler.scale_model_input(control_model_input, t)
controlnet_prompt_embeds = prompt_embeds.chunk(2)[1]
else:
control_model_input = latent_model_input
controlnet_prompt_embeds = prompt_embeds
if isinstance(controlnet_keep[i], list):
cond_scale = [
c * s for c, s in zip(controlnet_conditioning_scale, controlnet_keep[i])
]
else:
cond_scale = controlnet_conditioning_scale * controlnet_keep[i]
control_model_input_reshape = rearrange(
control_model_input, "b c t h w -> (b t) c h w"
)
encoder_hidden_states_repeat = repeat(
controlnet_prompt_embeds,
"b n q->(b t) n q",
t=control_model_input.shape[2],
)
down_block_res_samples, mid_block_res_sample = self.controlnet(
control_model_input_reshape,
t,
encoder_hidden_states_repeat,
controlnet_cond=image,
controlnet_cond_latents=controlnet_latents,
conditioning_scale=cond_scale,
guess_mode=guess_mode,
return_dict=False,
)
return down_block_res_samples, mid_block_res_sample
class InflatedConv3d(nn.Conv2d):
def forward(self, x):
video_length = x.shape[2]
x = rearrange(x, "b c f h w -> (b f) c h w")
x = super().forward(x)
x = rearrange(x, "(b f) c h w -> b c f h w", f=video_length)
return x
def zero_module(module):
# Zero out the parameters of a module and return it.
for p in module.parameters():
p.detach().zero_()
return module
class PoseGuider(ModelMixin):
def __init__(
self,
conditioning_embedding_channels: int,
conditioning_channels: int = 3,
block_out_channels: Tuple[int] = (16, 32, 64, 128),
):
super().__init__()
self.conv_in = InflatedConv3d(
conditioning_channels, block_out_channels[0], kernel_size=3, padding=1
)
self.blocks = nn.ModuleList([])
for i in range(len(block_out_channels) - 1):
channel_in = block_out_channels[i]
channel_out = block_out_channels[i + 1]
self.blocks.append(
InflatedConv3d(channel_in, channel_in, kernel_size=3, padding=1)
)
self.blocks.append(
InflatedConv3d(
channel_in, channel_out, kernel_size=3, padding=1, stride=2
)
)
self.conv_out = zero_module(
InflatedConv3d(
block_out_channels[-1],
conditioning_embedding_channels,
kernel_size=3,
padding=1,
)
)
def forward(self, conditioning):
embedding = self.conv_in(conditioning)
embedding = F.silu(embedding)
for block in self.blocks:
embedding = block(embedding)
embedding = F.silu(embedding)
embedding = self.conv_out(embedding)
return embedding
@classmethod
def from_pretrained(
cls,
pretrained_model_path,
conditioning_embedding_channels: int,
conditioning_channels: int = 3,
block_out_channels: Tuple[int] = (16, 32, 64, 128),
):
if not os.path.exists(pretrained_model_path):
print(f"There is no model file in {pretrained_model_path}")
print(
f"loaded PoseGuider's pretrained weights from {pretrained_model_path} ..."
)
state_dict = torch.load(pretrained_model_path, map_location="cpu")
model = PoseGuider(
conditioning_embedding_channels=conditioning_embedding_channels,
conditioning_channels=conditioning_channels,
block_out_channels=block_out_channels,
)
m, u = model.load_state_dict(state_dict, strict=False)
# print(f"### missing keys: {len(m)}; \n### unexpected keys: {len(u)};")
params = [p.numel() for n, p in model.named_parameters()]
print(f"### PoseGuider's Parameters: {sum(params) / 1e6} M")
return model