ananyagm
commited on
Commit
·
c93cfd2
1
Parent(s):
7d847eb
Context-Informed-Descriptions
Browse files- Dockerfile +11 -0
- main.py +51 -0
- requirements.txt +2 -0
Dockerfile
ADDED
@@ -0,0 +1,11 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
FROM python:3.9
|
2 |
+
|
3 |
+
WORKDIR /code
|
4 |
+
|
5 |
+
COPY ./requirements.txt /code/requirements.txt
|
6 |
+
|
7 |
+
RUN pip install --no-cache-dir --upgrade -r /code/requirements.txt
|
8 |
+
|
9 |
+
COPY . .
|
10 |
+
|
11 |
+
CMD ["gunicorn", "-b", "0.0.0.0:7860", "main:app", ]
|
main.py
ADDED
@@ -0,0 +1,51 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import json
|
2 |
+
import tiktoken
|
3 |
+
import requests
|
4 |
+
from flask_cors import CORS, cross_origin
|
5 |
+
from PIL import Image
|
6 |
+
from transformers import CLIPProcessor, CLIPModel, pipeline, AutoTokenizer
|
7 |
+
from flask import Flask, request, jsonify
|
8 |
+
|
9 |
+
app = Flask(__name__)
|
10 |
+
CORS(app)
|
11 |
+
|
12 |
+
encoding = tiktoken.get_encoding("cl100k_base")
|
13 |
+
model = CLIPModel.from_pretrained("openai/clip-vit-base-patch32")
|
14 |
+
tokenizer = AutoTokenizer.from_pretrained("facebook/bart-large-cnn")
|
15 |
+
processor = CLIPProcessor.from_pretrained("openai/clip-vit-base-patch32")
|
16 |
+
summarizer = pipeline("summarization", model="facebook/bart-large-cnn")
|
17 |
+
|
18 |
+
@app.route("/")
|
19 |
+
|
20 |
+
@app.route('/clip-scores', methods=['POST'])
|
21 |
+
@cross_origin(origin='chrome-extension://caglaokjfpffmkcbjknpolcjgjomamea')
|
22 |
+
def getClipScores():
|
23 |
+
if request.method == 'POST':
|
24 |
+
data = request.get_json()
|
25 |
+
scores = data.get('scores')
|
26 |
+
imageUrl = data.get('imageUrl')
|
27 |
+
image = Image.open(requests.get(imageUrl, stream=True).raw)
|
28 |
+
for entry in scores:
|
29 |
+
entry["summary"] = summarize_text(entry["text"])
|
30 |
+
texts = [entry['summary'] for entry in scores]
|
31 |
+
inputs = processor(text=texts, images=image, return_tensors="pt", truncation=True, padding=True)
|
32 |
+
outputs = model(**inputs)
|
33 |
+
logits_per_image = outputs.logits_per_image
|
34 |
+
probs = logits_per_image.softmax(dim=1).detach().cpu().numpy()
|
35 |
+
for i, entry in enumerate(scores):
|
36 |
+
entry['clip_score'] = float(probs[0, i])
|
37 |
+
sorted_scores = sorted(scores, key=lambda x: x['clip_score'], reverse= True)
|
38 |
+
print(jsonify("Sorted scores json", sorted_scores))
|
39 |
+
return jsonify(sorted_scores)
|
40 |
+
|
41 |
+
def summarize_text (text):
|
42 |
+
tokens = tokenizer(text, return_tensors='pt', truncation=True, max_length=tokenizer.model_max_length, padding="max_length")
|
43 |
+
input_ids = tokens.input_ids
|
44 |
+
if input_ids.size(1) > tokenizer.model_max_length:
|
45 |
+
summary = summarizer(text, max_length=77, min_length=20, do_sample=False)
|
46 |
+
return summary[0]['summary_text']
|
47 |
+
else:
|
48 |
+
return text
|
49 |
+
|
50 |
+
if __name__ == "__main__":
|
51 |
+
app.run(debug = True)
|
requirements.txt
ADDED
@@ -0,0 +1,2 @@
|
|
|
|
|
|
|
1 |
+
flask
|
2 |
+
gunicorn
|