File size: 13,363 Bytes
e70cddd
 
 
3f98f11
 
e70cddd
 
 
3f98f11
e70cddd
0b0135c
3f98f11
e70cddd
3f98f11
e70cddd
3f98f11
e70cddd
 
 
 
 
3f98f11
 
 
 
 
 
 
 
 
 
 
e70cddd
 
3f98f11
 
 
 
 
 
e70cddd
 
 
3f98f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e70cddd
3f98f11
 
 
 
 
 
 
 
 
 
 
e70cddd
 
 
 
 
 
 
 
 
 
 
 
6c98e48
 
e70cddd
6c98e48
 
3f98f11
 
 
 
 
 
e70cddd
6c98e48
 
 
 
 
3f98f11
 
 
e70cddd
3f98f11
 
 
 
e70cddd
3f98f11
 
 
 
 
 
 
 
e70cddd
 
 
 
 
 
 
 
 
 
 
3f98f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e70cddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f98f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
17672b0
3f98f11
118e27e
3f98f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e70cddd
3f98f11
 
 
17672b0
e70cddd
3f98f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e70cddd
 
 
 
 
 
 
3f98f11
e70cddd
 
 
 
 
 
 
 
 
3f98f11
 
 
 
 
 
 
 
 
 
 
 
 
 
e70cddd
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
3f98f11
 
 
 
 
 
17672b0
e70cddd
118e27e
 
 
 
17672b0
e70cddd
 
 
3f98f11
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
e70cddd
3f98f11
 
 
 
 
 
 
 
 
 
 
 
e70cddd
 
3f98f11
 
e70cddd
 
 
 
 
3f98f11
 
 
 
 
e70cddd
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
import base64
import chromadb
import gc
import gradio as gr
import io
import numpy as np
import ocrmypdf
import os
import pandas as pd
import pymupdf
import spaces
import torch
from PIL import Image
from chromadb.utils import embedding_functions
from chromadb.utils.data_loaders import ImageLoader
from langchain import PromptTemplate
from langchain.text_splitter import RecursiveCharacterTextSplitter
from langchain_community.llms import HuggingFaceEndpoint
from pdfminer.high_level import extract_text
from transformers import LlavaNextForConditionalGeneration, LlavaNextProcessor
from utils import *

if torch.cuda.is_available():
    processor = LlavaNextProcessor.from_pretrained("llava-hf/llava-v1.6-mistral-7b-hf")
    vision_model = LlavaNextForConditionalGeneration.from_pretrained(
        "llava-hf/llava-v1.6-mistral-7b-hf",
        torch_dtype=torch.float16,
        low_cpu_mem_usage=True,
        load_in_4bit=True,
    )


@spaces.GPU()
def get_image_description(image):
    torch.cuda.empty_cache()
    gc.collect()

    descriptions = []
    prompt = "[INST] <image>\nDescribe the image in a sentence [/INST]"

    inputs = processor(prompt, image, return_tensors="pt").to("cuda:0")
    output = vision_model.generate(**inputs, max_new_tokens=100)
    descriptions.append(processor.decode(output[0], skip_special_tokens=True))
    return descriptions


CSS = """
#table_col {background-color: rgb(33, 41, 54);}
"""


# def get_vectordb(text, images, tables):
def get_vectordb(text, images):
    client = chromadb.EphemeralClient()
    loader = ImageLoader()
    sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
        model_name="multi-qa-mpnet-base-dot-v1"
    )
    if "text_db" in [i.name for i in client.list_collections()]:
        client.delete_collection("text_db")
    if "image_db" in [i.name for i in client.list_collections()]:
        client.delete_collection("image_db")

    text_collection = client.get_or_create_collection(
        name="text_db",
        embedding_function=sentence_transformer_ef,
        data_loader=loader,
    )
    image_collection = client.get_or_create_collection(
        name="image_db",
        embedding_function=sentence_transformer_ef,
        data_loader=loader,
        metadata={"hnsw:space": "cosine"},
    )
    descs = []
    print(descs)
    for image in images:
        try:
            descs.append(get_image_description(image)[0])
        except:
            descs.append("Could not generate image description due to some error")

    # image_descriptions = get_image_descriptions(images)
    image_dict = [{"image": image_to_bytes(img)} for img in images]

    if len(images) > 0:
        image_collection.add(
            ids=[str(i) for i in range(len(images))],
            documents=descs,
            metadatas=image_dict,
        )

    splitter = RecursiveCharacterTextSplitter(
        chunk_size=500,
        chunk_overlap=10,
    )

    if len(text) > 0:
        docs = splitter.create_documents([text])
        doc_texts = [i.page_content for i in docs]
        text_collection.add(
            ids=[str(i) for i in list(range(len(doc_texts)))], documents=doc_texts
        )
    return client


def extract_data_from_pdfs(docs, session, include_images, progress=gr.Progress()):
    if len(docs) == 0:
        raise gr.Error("No documents to process")
    progress(0, "Extracting Images")

    # images = extract_images(docs)

    progress(0.25, "Extracting Text")

    strategy = "hi_res"
    model_name = "yolox"
    all_elements = []
    all_text = ""

    images = []
    for doc in docs:
        ocrmypdf.ocr(doc, "ocr.pdf", deskew=True, skip_text=True)
        text = extract_text("ocr.pdf")
        all_text += clean_text(text) + "\n\n"
        if include_images == "Include Images":
            images.extend(extract_images(["ocr.pdf"]))

    progress(
        0.6, "Generating image descriptions and inserting everything into vectorDB"
    )
    vectordb = get_vectordb(all_text, images)

    progress(1, "Completed")
    session["processed"] = True
    return (
        vectordb,
        session,
        gr.Row(visible=True),
        all_text[:2000] + "...",
        # display,
        images[:2],
        "<h1 style='text-align: center'>Completed<h1>",
        # image_descriptions
    )


sentence_transformer_ef = embedding_functions.SentenceTransformerEmbeddingFunction(
    model_name="multi-qa-mpnet-base-dot-v1"
)


def conversation(
    vectordb_client, msg, num_context, img_context, history, hf_token, model_path
):
    if hf_token.strip() != "" and model_path.strip() != "":
        llm = HuggingFaceEndpoint(
            repo_id=model_path,
            temperature=0.4,
            max_new_tokens=800,
            huggingfacehub_api_token=hf_token,
        )
    else:
        llm = HuggingFaceEndpoint(
            repo_id="meta-llama/Meta-Llama-3-8B-Instruct",
            temperature=0.4,
            max_new_tokens=800,
            huggingfacehub_api_token=os.getenv("P_HF_TOKEN", "None"),
        )

    text_collection = vectordb_client.get_collection(
        "text_db", embedding_function=sentence_transformer_ef
    )
    image_collection = vectordb_client.get_collection(
        "image_db", embedding_function=sentence_transformer_ef
    )

    results = text_collection.query(
        query_texts=[msg], include=["documents"], n_results=num_context
    )["documents"][0]
    similar_images = image_collection.query(
        query_texts=[msg],
        include=["metadatas", "distances", "documents"],
        n_results=img_context,
    )
    img_links = [i["image"] for i in similar_images["metadatas"][0]]

    images_and_locs = [
        Image.open(io.BytesIO(base64.b64decode(i[1])))
        for i in zip(similar_images["distances"][0], img_links)
    ]
    img_desc = "\n".join(similar_images["documents"][0])
    if len(img_links) == 0:
        img_desc = "No Images Are Provided"
    template = """
    Context:
    {context}

    Included Images:
    {images}
    
    Question:
    {question}

    Answer:

    """
    prompt = PromptTemplate(template=template, input_variables=["context", "question"])
    context = "\n\n".join(results)
    # references = [gr.Textbox(i, visible=True, interactive=False) for i in results]
    response = llm(prompt.format(context=context, question=msg, images=img_desc))
    return history + [(msg, response)], results, images_and_locs


def check_validity_and_llm(session_states):
    if session_states.get("processed", False) == True:
        return gr.Tabs(selected=2)
    raise gr.Error("Please extract data first")


def get_stats(vectordb):
    eles = vectordb.get()
    # words =
    text_data = [f"Chunks: {len(eles)}", "HIII"]
    return "\n".join(text_data), "", ""


with gr.Blocks(css=CSS, theme=gr.themes.Soft(text_size=sizes.text_md)) as demo:
    vectordb = gr.State()
    doc_collection = gr.State(value=[])
    session_states = gr.State(value={})
    references = gr.State(value=[])

    gr.Markdown(
        """<h2><center>Multimodal PDF Chatbot</center></h2>
    <h3><center><b>Interact With Your PDF Documents</b></center></h3>"""
    )
    gr.Markdown(
        """<center><h3><b>Note: </b> This application leverages advanced Retrieval-Augmented Generation (RAG) techniques to provide context-aware responses from your PDF documents</center><h3><br>
    <center>Utilizing multimodal capabilities, this chatbot can interpret and answer queries based on both textual and visual information within your PDFs.</center>"""
    )
    gr.Markdown(
        """
    <center><b>Warning: </b> Extracting text and images from your document and generating embeddings may take some time due to the use of OCR and multimodal LLMs for image description<center>
    """
    )
    with gr.Tabs() as tabs:
        with gr.TabItem("Upload PDFs", id=0) as pdf_tab:
            with gr.Row():
                with gr.Column():
                    documents = gr.File(
                        file_count="multiple",
                        file_types=["pdf"],
                        interactive=True,
                        label="Upload your PDF file/s",
                    )
                    pdf_btn = gr.Button(value="Next", elem_id="button1")

        with gr.TabItem("Extract Data", id=1) as preprocess:
            with gr.Row():
                with gr.Column():
                    back_p1 = gr.Button(value="Back")
                with gr.Column():
                    embed = gr.Button(value="Extract Data")
                with gr.Column():
                    next_p1 = gr.Button(value="Next")
            with gr.Row():
                include_images = gr.Radio(
                    ["Include Images", "Exclude Images"],
                    value="Include Images",
                    label="Include/ Exclude Images",
                    interactive=True,
                )

            with gr.Row(equal_height=True, variant="panel") as row:
                selected = gr.Dataframe(
                    interactive=False,
                    col_count=(1, "fixed"),
                    headers=["Selected Files"],
                )
                prog = gr.HTML(
                    value="<h1 style='text-align: center'>Click the 'Extract' button to extract data from PDFs<h1>"
                )

            with gr.Accordion("See Parts of Extracted Data", open=False):
                with gr.Column(visible=True) as sample_data:
                    with gr.Row():
                        with gr.Column():
                            ext_text = gr.Textbox(
                                label="Sample Extracted Text", lines=15
                            )
                        with gr.Column():
                            images = gr.Gallery(
                                label="Sample Extracted Images", columns=1, rows=2
                            )

        with gr.TabItem("Chat", id=2) as chat_tab:
            with gr.Accordion("Config (Advanced) (Optional)", open=False):
                with gr.Row(variant="panel", equal_height=True):
                    choice = gr.Radio(
                        ["chromaDB"],
                        value="chromaDB",
                        label="Vector Database",
                        interactive=True,
                    )
                    with gr.Accordion("Use your own model (optional)", open=False):
                        hf_token = gr.Textbox(
                            label="HuggingFace Token", interactive=True
                        )
                        model_path = gr.Textbox(label="Model Path", interactive=True)
                with gr.Row(variant="panel", equal_height=True):
                    num_context = gr.Slider(
                        label="Number of text context elements",
                        minimum=1,
                        maximum=20,
                        step=1,
                        interactive=True,
                        value=3,
                    )
                    img_context = gr.Slider(
                        label="Number of image context elements",
                        minimum=1,
                        maximum=10,
                        step=1,
                        interactive=True,
                        value=2,
                    )
            with gr.Row():
                with gr.Column():
                    ret_images = gr.Gallery("Similar Images", columns=1, rows=2)
                with gr.Column():
                    chatbot = gr.Chatbot(height=400)
            with gr.Accordion("Text References", open=False):
                # text_context = gr.Row()

                @gr.render(inputs=references)
                def gen_refs(references):
                    # print(references)
                    n = len(references)
                    for i in range(n):
                        gr.Textbox(
                            label=f"Reference-{i+1}", value=references[i], lines=3
                        )

            with gr.Row():
                msg = gr.Textbox(
                    placeholder="Type your question here (e.g. 'What is this document about?')",
                    interactive=True,
                    container=True,
                )
            with gr.Row():
                submit_btn = gr.Button("Submit message")
                clear_btn = gr.ClearButton([msg, chatbot], value="Clear conversation")

    pdf_btn.click(
        fn=extract_pdfs,
        inputs=[documents, doc_collection],
        outputs=[doc_collection, tabs, selected],
    )
    embed.click(
        extract_data_from_pdfs,
        inputs=[doc_collection, session_states, include_images],
        outputs=[
            vectordb,
            session_states,
            sample_data,
            ext_text,
            images,
            prog,
        ],
    )

    submit_btn.click(
        conversation,
        [vectordb, msg, num_context, img_context, chatbot, hf_token, model_path],
        [chatbot, references, ret_images],
    )

    msg.submit(
        conversation,
        [vectordb, msg, num_context, img_context, chatbot, hf_token, model_path],
        [chatbot, references, ret_images],
    )

    back_p1.click(lambda: gr.Tabs(selected=0), None, tabs)

    next_p1.click(check_validity_and_llm, session_states, tabs)
if __name__ == "__main__":
    demo.launch()