|
|
|
import time |
|
import streamlit as st |
|
import logging |
|
import pandas as pd |
|
from json import JSONDecodeError |
|
from markdown import markdown |
|
import random |
|
from typing import List, Dict, Any, Tuple, Optional |
|
|
|
from haystack.document_stores import FAISSDocumentStore |
|
from haystack.nodes import EmbeddingRetriever |
|
from haystack.pipelines import ExtractiveQAPipeline |
|
from haystack.nodes import FARMReader |
|
from haystack.pipelines import ExtractiveQAPipeline |
|
from annotated_text import annotation |
|
import shutil |
|
from urllib.parse import unquote |
|
|
|
|
|
|
|
INDEX_DIR = 'data/index' |
|
|
|
|
|
|
|
@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None}, allow_output_mutation=True) |
|
def start_haystack(): |
|
""" |
|
load document store, retriever, reader and create pipeline |
|
""" |
|
shutil.copy(f'{INDEX_DIR}/faiss_document_store.db','.') |
|
document_store = FAISSDocumentStore( |
|
faiss_index_path=f'{INDEX_DIR}/my_faiss_index.faiss', |
|
faiss_config_path=f'{INDEX_DIR}/my_faiss_index.json') |
|
print (f'Index size: {document_store.get_document_count()}') |
|
retriever = EmbeddingRetriever( |
|
document_store=document_store, |
|
embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1", |
|
model_format="sentence_transformers" |
|
) |
|
reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2", use_gpu=True) |
|
pipe = ExtractiveQAPipeline(reader, retriever) |
|
return pipe |
|
|
|
@st.cache() |
|
def load_questions(): |
|
with open('./data/questions.txt') as fin: |
|
questions = [line.strip() for line in fin.readlines()] |
|
return questions |
|
|
|
def set_state_if_absent(key, value): |
|
if key not in st.session_state: |
|
st.session_state[key] = value |
|
|
|
def query(pipe, question): |
|
"""Run query and get answers""" |
|
return (pipe.run(question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}), None) |
|
|
|
|
|
def main(): |
|
|
|
|
|
|
|
pipe=start_haystack() |
|
questions = load_questions() |
|
|
|
|
|
set_state_if_absent('question', "Where is Twin Peaks?") |
|
set_state_if_absent('answer', '') |
|
set_state_if_absent('results', None) |
|
set_state_if_absent('raw_json', None) |
|
set_state_if_absent('random_question_requested', False) |
|
|
|
|
|
def reset_results(*args): |
|
st.session_state.answer = None |
|
st.session_state.results = None |
|
st.session_state.raw_json = None |
|
|
|
|
|
st.markdown( |
|
""" |
|
<style> |
|
[data-testid="stSidebar"][aria-expanded="true"] > div:first-child{ |
|
width: 350px; |
|
} |
|
[data-testid="stSidebar"][aria-expanded="false"] > div:first-child{ |
|
width: 350px; |
|
margin-left: -350px; |
|
} |
|
""", |
|
unsafe_allow_html=True, |
|
) |
|
|
|
st.write("# Who killed Laura Palmer?") |
|
st.write("### The first Twin Peaks Question Answering system!") |
|
|
|
st.markdown(""" |
|
Ask any question about Twin Peaks [Twin Peaks] (https://twinpeaks.fandom.com/wiki/Twin_Peaks) |
|
and see if the AI ββcan find an answer... |
|
|
|
*Note: do not use keywords, but full-fledged questions.* |
|
""") |
|
|
|
|
|
st.sidebar.header("Who killed Laura Palmer?") |
|
st.sidebar.image("https://upload.wikimedia.org/wikipedia/it/3/39/Twin-peaks-1990.jpg") |
|
st.sidebar.markdown('<p align="center"><b>Twin Peaks Question Answering system</b></p>', unsafe_allow_html=True) |
|
st.sidebar.markdown(f""" |
|
<style> |
|
a {{ |
|
text-decoration: none; |
|
}} |
|
.haystack-footer {{ |
|
text-align: center; |
|
}} |
|
.haystack-footer h4 {{ |
|
margin: 0.1rem; |
|
padding:0; |
|
}} |
|
footer {{ |
|
opacity: 0; |
|
}} |
|
.haystack-footer img {{ |
|
display: block; |
|
margin-left: auto; |
|
margin-right: auto; |
|
width: 85%; |
|
}} |
|
</style> |
|
<div class="haystack-footer"> |
|
<p><a href="https://github.com/anakin87/who-killed-laura-palmer">GitHub</a> - |
|
Built with <a href="https://github.com/deepset-ai/haystack/">Haystack</a><br/> |
|
<small>Data crawled from <a href="https://twinpeaks.fandom.com/wiki/Twin_Peaks_Wiki">Twin Peaks Wiki</a>.</small> |
|
</p> |
|
<img src = 'https://static.wikia.nocookie.net/twinpeaks/images/e/ef/Laura_Palmer%2C_the_Queen_Of_Hearts.jpg'/> |
|
<br/> |
|
</div> |
|
""", unsafe_allow_html=True) |
|
|
|
|
|
st.sidebar.markdown(""" |
|
<p align="center"> |
|
<iframe style="border-radius:12px" src="https://open.spotify.com/embed/playlist/38rrtWgflrw7grB37aMlsO?utm_source=generator" width="85%" height="380" frameBorder="0" allowfullscreen="" allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture"></iframe> |
|
</p>""", unsafe_allow_html=True) |
|
|
|
|
|
question = st.text_input("", |
|
value=st.session_state.question, |
|
max_chars=100, |
|
|
|
) |
|
col1, col2 = st.columns(2) |
|
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) |
|
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) |
|
|
|
|
|
run_pressed = col1.button("Run") |
|
|
|
|
|
if col2.button("Random question"): |
|
reset_results() |
|
question = random.choice(questions) |
|
while question == st.session_state.question: |
|
question = random.choice(questions) |
|
st.session_state.question = question |
|
|
|
st.session_state.random_question_requested = True |
|
|
|
|
|
raise st.script_runner.RerunException(st.script_request_queue.RerunData(None)) |
|
else: |
|
st.session_state.random_question_requested = False |
|
|
|
run_query = (run_pressed or question != st.session_state.question) and not st.session_state.random_question_requested |
|
|
|
|
|
if run_query and question: |
|
time_start=time.time() |
|
reset_results() |
|
st.session_state.question = question |
|
|
|
with st.spinner( |
|
"π§ Performing neural search on documents..." |
|
|
|
): |
|
try: |
|
st.session_state.results, st.session_state.raw_json = query(pipe, question) |
|
time_end=time.time() |
|
print(f'elapsed time: {time_end - time_start}') |
|
except JSONDecodeError as je: |
|
st.error("π An error occurred reading the results. Is the document store working?") |
|
return |
|
except Exception as e: |
|
logging.exception(e) |
|
if "The server is busy processing requests" in str(e) or "503" in str(e): |
|
st.error("π§βπΎ All our workers are busy! Try again later.") |
|
else: |
|
st.error("π An error occurred during the request.") |
|
return |
|
|
|
if st.session_state.results: |
|
st.write("## Results:") |
|
|
|
alert_irrelevance=True |
|
|
|
for count, result in enumerate(st.session_state.results['answers']): |
|
result=result.to_dict() |
|
if result["answer"]: |
|
if alert_irrelevance and result['score']<0.50: |
|
alert_irrelevance = False |
|
st.write("<h4 style='color: darkred'>Attention, the following answers have low score:</h3>", unsafe_allow_html=True) |
|
|
|
answer, context = result["answer"], result["context"] |
|
start_idx = context.find(answer) |
|
end_idx = start_idx + len(answer) |
|
|
|
st.write(markdown("- ..."+context[:start_idx] + str(annotation(answer, "ANSWER", "#3e1c21")) + context[end_idx:]+"..."), unsafe_allow_html=True) |
|
source = "" |
|
name = unquote(result['meta']['name']) |
|
url = result['meta']['url'] |
|
source = f"[{name}]({url})" |
|
st.markdown(f"**Score:** {result['score']:.2f} - **Source:** {source}") |
|
else: |
|
st.info("π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!") |
|
main() |
|
|