File size: 8,803 Bytes
592c3d9
e49f5ad
 
 
 
 
 
 
7c3a548
e49f5ad
592c3d9
e49f5ad
 
592c3d9
e49f5ad
 
 
d4647c0
 
e49f5ad
 
5e13129
e49f5ad
 
 
 
 
 
 
 
42ac7b3
e49f5ad
42ac7b3
 
e49f5ad
 
 
 
 
 
c5b375b
 
 
e49f5ad
be93ed6
 
 
 
 
f0793eb
 
be93ed6
e49f5ad
 
 
 
 
 
 
 
 
592c3d9
e49f5ad
09534c2
 
fb4073e
e49f5ad
be93ed6
b032e38
e49f5ad
b032e38
e49f5ad
 
 
 
 
 
 
 
 
 
 
1635e60
 
 
 
 
 
 
 
 
 
 
 
 
 
b032e38
 
 
e49f5ad
c557ead
 
 
e49f5ad
 
c557ead
e49f5ad
09534c2
 
 
22d2aff
09534c2
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
ca216e5
09534c2
 
 
 
 
 
 
 
c557ead
 
 
 
 
09534c2
e49f5ad
 
 
 
f0793eb
e49f5ad
 
 
 
 
 
 
592c3d9
 
 
 
be93ed6
 
 
 
 
592c3d9
 
 
 
 
 
e49f5ad
 
 
 
 
592c3d9
e49f5ad
 
 
 
 
 
 
 
 
592c3d9
 
e49f5ad
 
 
 
 
f0793eb
e49f5ad
 
 
 
 
 
567babf
c5b375b
e49f5ad
 
 
 
ca216e5
e49f5ad
567babf
 
 
 
e49f5ad
 
 
 
 
7c3a548
592c3d9
c5b375b
be93ed6
 
 
e57fc18
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230

import time
import streamlit as st
import logging
import pandas as pd
from json import JSONDecodeError
from markdown import markdown
import random
from typing import List, Dict, Any, Tuple, Optional

from haystack.document_stores import FAISSDocumentStore
from haystack.nodes import EmbeddingRetriever
from haystack.pipelines import ExtractiveQAPipeline
from haystack.nodes import FARMReader
from haystack.pipelines import ExtractiveQAPipeline
from annotated_text import annotation
import shutil
from urllib.parse import unquote


# FAISS index directory
INDEX_DIR = 'data/index'


# the following function is cached to make index and models load only at start
@st.cache(hash_funcs={"builtins.SwigPyObject": lambda _: None}, allow_output_mutation=True)
def start_haystack():
  """
  load document store, retriever, reader and create pipeline
  """
  shutil.copy(f'{INDEX_DIR}/faiss_document_store.db','.')
  document_store = FAISSDocumentStore(
      faiss_index_path=f'{INDEX_DIR}/my_faiss_index.faiss',
      faiss_config_path=f'{INDEX_DIR}/my_faiss_index.json')
  print (f'Index size: {document_store.get_document_count()}')  
  retriever = EmbeddingRetriever(
      document_store=document_store,
    embedding_model="sentence-transformers/multi-qa-mpnet-base-dot-v1",
    model_format="sentence_transformers"
  )
  reader = FARMReader(model_name_or_path="deepset/roberta-base-squad2",
                        use_gpu=False,
                        confidence_threshold=0.15)
  pipe = ExtractiveQAPipeline(reader, retriever)
  return pipe

@st.cache()
def load_questions():
    with open('./data/questions.txt') as fin:
        questions = [line.strip() for line in fin.readlines()
                    if not line.startswith('#')]
    return questions    

def set_state_if_absent(key, value):
    if key not in st.session_state:
        st.session_state[key] = value

def query(pipe, question):
    """Run query and get answers"""
    return (pipe.run(question, params={"Retriever": {"top_k": 10}, "Reader": {"top_k": 5}}), None)


def main():
    # st.set_page_config(page_title='Who killed Laura Palmer?',
    # page_icon="https://static.wikia.nocookie.net/twinpeaks/images/4/4a/Site-favicon.ico/revision/latest?cb=20210710003705")
    
    pipe=start_haystack()
    questions = load_questions()

    # Persistent state
    set_state_if_absent('question', "Where is Twin Peaks?")
    set_state_if_absent('answer', '')
    set_state_if_absent('results', None)
    set_state_if_absent('raw_json', None)
    set_state_if_absent('random_question_requested', False)

    # Small callback to reset the interface in case the text of the question changes
    def reset_results(*args):
        st.session_state.answer = None
        st.session_state.results = None
        st.session_state.raw_json = None

    # sidebar style
    st.markdown(
    """
    <style>
    [data-testid="stSidebar"][aria-expanded="true"] > div:first-child{
        width: 350px;
    }
    [data-testid="stSidebar"][aria-expanded="false"] > div:first-child{
        width: 350px;
        margin-left: -350px;
    }
    """,
    unsafe_allow_html=True,
    )
    # Title
    st.write("# Who killed Laura Palmer?")
    st.write("### The first Twin Peaks Question Answering system!")
    
    st.markdown("""
Ask any question about Twin Peaks [Twin Peaks] (https://twinpeaks.fandom.com/wiki/Twin_Peaks) 
and see if the AI ​​can find an answer...

*Note: do not use keywords, but full-fledged questions.*
""")

    # Sidebar
    st.sidebar.header("Who killed Laura Palmer?")   
    st.sidebar.image("https://upload.wikimedia.org/wikipedia/it/3/39/Twin-peaks-1990.jpg")
    st.sidebar.markdown('<p align="center"><b>Twin Peaks Question Answering system</b></p>', unsafe_allow_html=True)
    st.sidebar.markdown(f"""
    <style>
        a {{
            text-decoration: none;
        }}
        .haystack-footer {{
            text-align: center;
        }}
        .haystack-footer h4 {{
            margin: 0.1rem;
            padding:0;
        }}
        footer {{
            opacity: 0;
        }}
        .haystack-footer img {{
            display: block;
            margin-left: auto;
            margin-right: auto;
            width: 85%;
        }}
    </style>
    <div class="haystack-footer">
        <p><a href="https://github.com/anakin87/who-killed-laura-palmer">GitHub</a> - 
        Built with <a href="https://github.com/deepset-ai/haystack/">Haystack</a><br/>
        <small>Data crawled from <a href="https://twinpeaks.fandom.com/wiki/Twin_Peaks_Wiki">Twin Peaks Wiki</a>.</small>       
    </p>
    <img src = 'https://static.wikia.nocookie.net/twinpeaks/images/e/ef/Laura_Palmer%2C_the_Queen_Of_Hearts.jpg'/>
    <br/>
    </div>
    """, unsafe_allow_html=True)

    # spotify webplayer
    st.sidebar.markdown("""
    <p align="center">
    <iframe style="border-radius:12px" src="https://open.spotify.com/embed/playlist/38rrtWgflrw7grB37aMlsO?utm_source=generator" width="85%" height="380" frameBorder="0" allowfullscreen="" allow="autoplay; clipboard-write; encrypted-media; fullscreen; picture-in-picture"></iframe>
    </p>""", unsafe_allow_html=True)   

    # Search bar
    question = st.text_input("",
        value=st.session_state.question,
        max_chars=100,
        on_change=reset_results
    )
    col1, col2 = st.columns(2)
    col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
    col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)

    # Run button
    run_pressed = col1.button("Run")

    # Get next random question from the CSV
    if col2.button("Random question"):
        reset_results()
        question = random.choice(questions)
        while question == st.session_state.question:  # Avoid picking the same question twice (the change is not visible on the UI)
            question = random.choice(questions)
        st.session_state.question = question
        # st.session_state.answer = new_row["Answer"].values[0]
        st.session_state.random_question_requested = True
        # Re-runs the script setting the random question as the textbox value
        # Unfortunately necessary as the Random Question button is _below_ the textbox
        raise st.script_runner.RerunException(st.script_request_queue.RerunData(None))
    else:
        st.session_state.random_question_requested = False
    
    run_query = (run_pressed or question != st.session_state.question) and not st.session_state.random_question_requested

    # Get results for query
    if run_query and question:
        time_start=time.time()
        reset_results()
        st.session_state.question = question

        with st.spinner(
            "🧠 &nbsp;&nbsp; Performing neural search on documents..."

        ):
            try:
                st.session_state.results, st.session_state.raw_json = query(pipe, question)
                time_end=time.time()
                print(f'elapsed time: {time_end - time_start}')
            except JSONDecodeError as je:
                st.error("πŸ‘“ &nbsp;&nbsp; An error occurred reading the results. Is the document store working?")
                return
            except Exception as e:
                logging.exception(e)
                st.error("🐞 &nbsp;&nbsp; An error occurred during the request.")
                return

    if st.session_state.results:
        st.write("## Results:")

        alert_irrelevance=True
        if len(st.session_state.results['answers'])==0:
            st.info("πŸ€” &nbsp;&nbsp; Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!")

        for count, result in enumerate(st.session_state.results['answers']):
            result=result.to_dict()
            if result["answer"]:
                if alert_irrelevance and result['score']<0.50:
                    alert_irrelevance = False
                    st.write("""
                    <h4 style='color: darkred'>Attention, the 
                    following answers have low relevance:</h4>""",
                    unsafe_allow_html=True)

            answer, context = result["answer"], result["context"]
            start_idx = context.find(answer)
            end_idx = start_idx + len(answer)
            # Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
            st.write(markdown("- ..."+context[:start_idx] + str(annotation(answer, "ANSWER", "#3e1c21")) + context[end_idx:]+"..."), unsafe_allow_html=True)
            source = ""
            name = unquote(result['meta']['name']).replace('_',' ')
            url = result['meta']['url']
            source = f"[{name}]({url})"
            st.markdown(f"**Score:** {result['score']:.2f} -  **Source:** {source}")
main()