File size: 12,225 Bytes
e49f5ad |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 |
import os
import sys
import logging
import pandas as pd
from json import JSONDecodeError
from pathlib import Path
import streamlit as st
from annotated_text import annotation
from markdown import markdown
import random
from utils import haystack_is_ready, query, send_feedback, upload_doc, haystack_version, get_backlink
# Adjust to a question that you would like users to see in the search bar when they load the UI:
DEFAULT_QUESTION_AT_STARTUP = os.getenv("DEFAULT_QUESTION_AT_STARTUP", "Who is Laura Palmer?")
DEFAULT_ANSWER_AT_STARTUP = os.getenv("DEFAULT_ANSWER_AT_STARTUP", "")
# Sliders
DEFAULT_DOCS_FROM_RETRIEVER = int(os.getenv("DEFAULT_DOCS_FROM_RETRIEVER", 3))
DEFAULT_NUMBER_OF_ANSWERS = int(os.getenv("DEFAULT_NUMBER_OF_ANSWERS", 3))
top_k_retriever=7
top_k_reader=5
# Labels for the evaluation
EVAL_LABELS = os.getenv("EVAL_FILE", Path(__file__).parent / "eval_labels_example.csv")
# Whether the file upload should be enabled or not
DISABLE_FILE_UPLOAD = True
def set_state_if_absent(key, value):
if key not in st.session_state:
st.session_state[key] = value
def main():
st.set_page_config(page_title='Who killed Laura Palmer?', page_icon="https://haystack.deepset.ai/img/HaystackIcon.png")
# Persistent state
set_state_if_absent('question', DEFAULT_QUESTION_AT_STARTUP)
set_state_if_absent('answer', DEFAULT_ANSWER_AT_STARTUP)
set_state_if_absent('results', None)
set_state_if_absent('raw_json', None)
set_state_if_absent('random_question_requested', False)
# Small callback to reset the interface in case the text of the question changes
def reset_results(*args):
st.session_state.answer = None
st.session_state.results = None
st.session_state.raw_json = None
# page_bg_img = """
# <style>
# .reportview-container {
# background: url("https://upload.wikimedia.org/wikipedia/it/3/39/Twin-peaks-1990.jpg")
# }
# .sidebar .sidebar-content {
# background: url("https://upload.wikimedia.org/wikipedia/it/3/39/Twin-peaks-1990.jpg")
# }
# </style>
# """
# st.markdown(page_bg_img, unsafe_allow_html=True)
# st.image("https://upload.wikimedia.org/wikipedia/it/3/39/Twin-peaks-1990.jpg")
# Title
st.write("# Who killed Laura Palmer?")
st.write("### The first Twin Peaks Question Answering system!")
st.markdown("""<br/>
Ask any question on Twin Peaks and see if the systsem can find the correct answer to your query!
*Note: do not use keywords, but full-fledged questions.*
""", unsafe_allow_html=True)
# Sidebar
st.sidebar.header("Who killed Laura Palmer?")
st.sidebar.image("https://upload.wikimedia.org/wikipedia/it/3/39/Twin-peaks-1990.jpg")
st.sidebar.markdown("#### Twin Peaks Question Answering system")
# top_k_reader = st.sidebar.slider(
# "Max. number of answers",
# min_value=1,
# max_value=10,
# value=DEFAULT_NUMBER_OF_ANSWERS,
# step=1,
# on_change=reset_results)
# top_k_retriever = st.sidebar.slider(
# "Max. number of documents from retriever",
# min_value=1,
# max_value=10,
# value=DEFAULT_DOCS_FROM_RETRIEVER,
# step=1,
# on_change=reset_results)
# eval_mode = st.sidebar.checkbox("Evaluation mode")
# debug = st.sidebar.checkbox("Show debug info")
# # File upload block
# if not DISABLE_FILE_UPLOAD:
# st.sidebar.write("## File Upload:")
# data_files = st.sidebar.file_uploader("", type=["pdf", "txt", "docx"], accept_multiple_files=True)
# for data_file in data_files:
# # Upload file
# if data_file:
# raw_json = upload_doc(data_file)
# st.sidebar.write(str(data_file.name) + " β
")
# if debug:
# st.subheader("REST API JSON response")
# st.sidebar.write(raw_json)
# hs_version = ""
# try:
# hs_version = f" <small>(v{haystack_version()})</small>"
# except Exception:
# pass
st.sidebar.markdown(f"""
<style>
a {{
text-decoration: none;
}}
.haystack-footer {{
text-align: center;
}}
.haystack-footer h4 {{
margin: 0.1rem;
padding:0;
}}
footer {{
opacity: 0;
}}
.haystack-footer img {{
display: block;
margin-left: auto;
margin-right: auto;
width: 85%;
}}
</style>
<div class="haystack-footer">
<p>Get it on <a href="https://github.com/deepset-ai/haystack/">GitHub</a> -
Built with <a href="https://github.com/deepset-ai/haystack/">Haystack</a><br/>
<small>Data crawled from <a href="https://twinpeaks.fandom.com/wiki/Twin_Peaks_Wiki">Twin Peaks Wiki</a>.</small>
</p>
<img src = 'https://static.wikia.nocookie.net/twinpeaks/images/e/ef/Laura_Palmer%2C_the_Queen_Of_Hearts.jpg'/>
<br/>
</div>
""", unsafe_allow_html=True)
# st.sidebar.image('https://static.wikia.nocookie.net/twinpeaks/images/e/ef/Laura_Palmer%2C_the_Queen_Of_Hearts.jpg', width=270) #use_column_width='always'
song_i = random.randint(1,11)
st.sidebar.audio(f'http://twinpeaks.narod.ru/Media/0{song_i}.mp3')
# Load csv into pandas dataframe
try:
df = pd.read_csv(EVAL_LABELS, sep=";")
except Exception:
st.error(f"The eval file was not found. Please check the demo's [README](https://github.com/deepset-ai/haystack/tree/master/ui/README.md) for more information.")
sys.exit(f"The eval file was not found under `{EVAL_LABELS}`. Please check the README (https://github.com/deepset-ai/haystack/tree/master/ui/README.md) for more information.")
# Search bar
question = st.text_input("",
value=st.session_state.question,
max_chars=100,
#on_change=reset_results
)
col1, col2 = st.columns(2)
col1.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
col2.markdown("<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True)
# Run button
run_pressed = col1.button("Run")
# Get next random question from the CSV
if col2.button("Random question"):
reset_results()
new_row = df.sample(1)
while new_row["Question Text"].values[0] == st.session_state.question: # Avoid picking the same question twice (the change is not visible on the UI)
new_row = df.sample(1)
st.session_state.question = new_row["Question Text"].values[0]
st.session_state.answer = new_row["Answer"].values[0]
st.session_state.random_question_requested = True
# Re-runs the script setting the random question as the textbox value
# Unfortunately necessary as the Random Question button is _below_ the textbox
raise st.script_runner.RerunException(st.script_request_queue.RerunData(None))
else:
st.session_state.random_question_requested = False
run_query = (run_pressed or question != st.session_state.question) and not st.session_state.random_question_requested
# Check the connection
with st.spinner("βοΈ Haystack is starting..."):
if not haystack_is_ready():
st.error("π« Connection Error. Is Haystack running?")
run_query = False
reset_results()
# Get results for query
if run_query and question:
reset_results()
st.session_state.question = question
with st.spinner(
"π§ Performing neural search on documents... \n "
"The response may be slow because the system is running on CPU. \n"
"If you want to support and speed up this site, please contact me on Github. "
):
try:
st.session_state.results, st.session_state.raw_json = query(question, top_k_reader=top_k_reader,
top_k_retriever=top_k_retriever)
except JSONDecodeError as je:
st.error("π An error occurred reading the results. Is the document store working?")
return
except Exception as e:
logging.exception(e)
if "The server is busy processing requests" in str(e) or "503" in str(e):
st.error("π§βπΎ All our workers are busy! Try again later.")
else:
st.error("π An error occurred during the request.")
return
if st.session_state.results:
eval_mode=False
# Show the gold answer if we use a question of the given set
if eval_mode and st.session_state.answer:
st.write("## Correct answer:")
st.write(st.session_state.answer)
st.write("## Results:")
alert_irrelevance=True
for count, result in enumerate(st.session_state.results):
if result["answer"]:
if alert_irrelevance and result['relevance']<=30:
alert_irrelevance = False
st.write("<h3 style='color: red'>Attention, the following answers have low relevance:</h3>", unsafe_allow_html=True)
answer, context = result["answer"], result["context"]
start_idx = context.find(answer)
end_idx = start_idx + len(answer)
# Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190
st.write(markdown(context[:start_idx] + str(annotation(answer, "ANSWER", "#8ef")) + context[end_idx:]), unsafe_allow_html=True)
source = ""
url = get_backlink(result)
if url:
source = f"({result['document']['meta']['url']})"
else:
source = f"{result['source']}"
st.markdown(f"**Relevance:** {result['relevance']} - **Source:** {source}")
else:
st.info("π€ Haystack is unsure whether any of the documents contain an answer to your question. Try to reformulate it!")
st.write("**Relevance:** ", result["relevance"])
if eval_mode and result["answer"]:
# Define columns for buttons
is_correct_answer = None
is_correct_document = None
button_col1, button_col2, button_col3, _ = st.columns([1, 1, 1, 6])
if button_col1.button("π", key=f"{result['context']}{count}1", help="Correct answer"):
is_correct_answer=True
is_correct_document=True
if button_col2.button("π", key=f"{result['context']}{count}2", help="Wrong answer and wrong passage"):
is_correct_answer=False
is_correct_document=False
if button_col3.button("ππ", key=f"{result['context']}{count}3", help="Wrong answer, but correct passage"):
is_correct_answer=False
is_correct_document=True
if is_correct_answer is not None and is_correct_document is not None:
try:
send_feedback(
query=question,
answer_obj=result["_raw"],
is_correct_answer=is_correct_answer,
is_correct_document=is_correct_document,
document=result["document"]
)
st.success("β¨ Thanks for your feedback! β¨")
except Exception as e:
logging.exception(e)
st.error("π An error occurred while submitting your feedback!")
st.write("___")
# if debug:
# st.subheader("REST API JSON response")
# st.write(st.session_state.raw_json)
main()
|