Spaces:
Running
Running
import streamlit as st | |
import time | |
import logging | |
from json import JSONDecodeError | |
# from markdown import markdown | |
# from annotated_text import annotation | |
# from urllib.parse import unquote | |
import random | |
import pandas as pd | |
from app_utils.backend_utils import load_statements, query | |
from app_utils.frontend_utils import set_state_if_absent, reset_results, entailment_html_messages | |
from app_utils.config import RETRIEVER_TOP_K | |
def main(): | |
statements = load_statements() | |
# Persistent state | |
set_state_if_absent('statement', "Elvis Presley is alive") | |
set_state_if_absent('answer', '') | |
set_state_if_absent('results', None) | |
set_state_if_absent('raw_json', None) | |
set_state_if_absent('random_statement_requested', False) | |
## MAIN CONTAINER | |
st.write("# Fact checking πΈ Rocks!") | |
st.write() | |
st.markdown(""" | |
##### Enter a factual statement about [Rock music](https://en.wikipedia.org/wiki/List_of_mainstream_rock_performers) and let the AI check it out for you... | |
""") | |
# Search bar | |
statement = st.text_input("", value=st.session_state.statement, | |
max_chars=100, on_change=reset_results) | |
col1, col2 = st.columns(2) | |
col1.markdown( | |
"<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) | |
col2.markdown( | |
"<style>.stButton button {width:100%;}</style>", unsafe_allow_html=True) | |
# Run button | |
run_pressed = col1.button("Run") | |
# Random statement button | |
if col2.button("Random statement"): | |
reset_results() | |
statement = random.choice(statements) | |
# Avoid picking the same statement twice (the change is not visible on the UI) | |
while statement == st.session_state.statement: | |
statement = random.choice(statements) | |
st.session_state.statement = statement | |
st.session_state.random_statement_requested = True | |
# Re-runs the script setting the random statement as the textbox value | |
# Unfortunately necessary as the Random statement button is _below_ the textbox | |
# raise st.script_runner.RerunException( | |
# st.script_request_queue.RerunData(None)) | |
else: | |
st.session_state.random_statement_requested = False | |
run_query = (run_pressed or statement != st.session_state.statement) \ | |
and not st.session_state.random_statement_requested | |
# Get results for query | |
if run_query and statement: | |
time_start = time.time() | |
reset_results() | |
st.session_state.statement = statement | |
with st.spinner("π§ Performing neural search on documents..."): | |
try: | |
st.session_state.results = query( | |
statement, RETRIEVER_TOP_K) | |
time_end = time.time() | |
print(time.strftime("%Y-%m-%d %H:%M:%S", time.gmtime())) | |
print(f'elapsed time: {time_end - time_start}') | |
except JSONDecodeError as je: | |
st.error( | |
"π An error occurred reading the results. Is the document store working?") | |
return | |
except Exception as e: | |
logging.exception(e) | |
st.error("π An error occurred during the request.") | |
return | |
# Display results | |
if st.session_state.results: | |
results = st.session_state.results | |
docs, agg_entailment_info = results['documents'], results['agg_entailment_info'] | |
print(results) | |
max_key = max(agg_entailment_info, key=agg_entailment_info.get) | |
message = entailment_html_messages[max_key] | |
st.markdown(f'<h4>{message}</h4>', unsafe_allow_html=True) | |
st.markdown(f'###### Aggregate entailment information:') | |
st.write(results['agg_entailment_info']) | |
st.markdown(f'###### Relevant snippets:') | |
# colms = st.columns((2, 5, 1, 1, 1, 1)) | |
# fields = ["Page title",'Content', 'Relevance', 'contradiction', 'neutral', 'entailment'] | |
# for col, field_name in zip(colms, fields): | |
# # header | |
# col.write(field_name) | |
df = [] | |
for doc in docs: | |
# col1, col2, col3, col4, col5, col6 = st.columns((2, 5, 1, 1, 1, 1)) | |
# col1.write(f"[{doc.meta['name']}]({doc.meta['url']})") | |
# col2.write(f"{doc.content}") | |
# col3.write(f"{doc.score:.3f}") | |
# col4.write(f"{doc.meta['entailment_info']['contradiction']:.2f}") | |
# col5.write(f"{doc.meta['entailment_info']['neutral']:.2f}") | |
# col6.write(f"{doc.meta['entailment_info']['entailment']:.2f}") | |
# 'con': f"{doc.meta['entailment_info']['contradiction']:.2f}", | |
# 'neu': f"{doc.meta['entailment_info']['neutral']:.2f}", | |
# 'ent': f"{doc.meta['entailment_info']['entailment']:.2f}", | |
# # 'url': doc.meta['url'], | |
# 'Content': doc.content} | |
# | |
# | |
# | |
row = {'Title': doc.meta['name'], | |
'Relevance': f"{doc.score:.3f}", | |
'con': f"{doc.meta['entailment_info']['contradiction']:.2f}", | |
'neu': f"{doc.meta['entailment_info']['neutral']:.2f}", | |
'ent': f"{doc.meta['entailment_info']['entailment']:.2f}", | |
# 'url': doc.meta['url'], | |
'Content': doc.content} | |
df.append(row) | |
st.dataframe(pd.DataFrame(df))#.style.apply(highlight)) | |
# if len(st.session_state.results['answers']) == 0: | |
# st.info("""π€ Haystack is unsure whether any of | |
# the documents contain an answer to your question. Try to reformulate it!""") | |
# for result in st.session_state.results['answers']: | |
# result = result.to_dict() | |
# if result["answer"]: | |
# if alert_irrelevance and result['score'] < LOW_RELEVANCE_THRESHOLD: | |
# alert_irrelevance = False | |
# st.write(""" | |
# <h4 style='color: darkred'>Attention, the | |
# following answers have low relevance:</h4>""", | |
# unsafe_allow_html=True) | |
# answer, context = result["answer"], result["context"] | |
# start_idx = context.find(answer) | |
# end_idx = start_idx + len(answer) | |
# # Hack due to this bug: https://github.com/streamlit/streamlit/issues/3190 | |
# st.write(markdown("- ..."+context[:start_idx] + | |
# str(annotation(answer, "ANSWER", "#3e1c21", "white")) + | |
# context[end_idx:]+"..."), unsafe_allow_html=True) | |
# source = "" | |
# name = unquote(result['meta']['name']).replace('_', ' ') | |
# url = result['meta']['url'] | |
# source = f"[{name}]({url})" | |
# st.markdown( | |
# f"**Score:** {result['score']:.2f} - **Source:** {source}") | |
# def make_pretty(styler): | |
# styler.set_caption("Weather Conditions") | |
# # styler.format(rain_condition) | |
# styler.format_con(lambda v: v.float(v)) | |
# styler.background_gradient(axis=None, vmin=0, vmax=1, cmap="YlGnBu") | |
# return styler | |
def highlight(s): | |
return ['background-color: red']*5 | |
main() |