File size: 5,022 Bytes
efcf35e
 
 
 
47f64a9
efcf35e
 
698d75d
4d3de5e
 
 
 
 
 
 
 
47f64a9
efcf35e
1219a4a
efcf35e
1219a4a
 
efcf35e
cf30b39
47f64a9
 
efcf35e
 
 
47f64a9
efcf35e
47f64a9
efcf35e
4d3de5e
efcf35e
 
 
 
7613560
4d3de5e
efcf35e
 
 
47f64a9
 
efcf35e
 
 
 
1219a4a
efcf35e
4d3de5e
 
efcf35e
4d3de5e
efcf35e
1219a4a
efcf35e
 
 
 
 
 
 
 
47f64a9
efcf35e
 
 
 
 
 
 
 
 
 
 
 
47f64a9
efcf35e
 
 
 
 
 
 
47f64a9
efcf35e
 
 
 
47f64a9
efcf35e
 
 
47f64a9
1219a4a
 
 
 
 
47f64a9
efcf35e
 
 
 
 
 
 
 
4d3de5e
efcf35e
 
4d3de5e
efcf35e
 
 
 
47f64a9
 
4d3de5e
47f64a9
efcf35e
 
 
 
 
 
 
 
 
 
 
 
4d3de5e
efcf35e
 
 
 
 
4d3de5e
 
 
 
 
efcf35e
 
 
 
47f64a9
efcf35e
47f64a9
 
1219a4a
efcf35e
 
 
47f64a9
 
efcf35e
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
import os
from threading import Thread
from typing import Iterator

import gradio as gr
import spaces
import torch
from transformers import AutoModelForCausalLM, AutoTokenizer, TextIteratorStreamer
import subprocess

subprocess.run(
    "pip install flash-attn --no-build-isolation",
    env={"FLASH_ATTENTION_SKIP_CUDA_BUILD": "TRUE"},
    shell=True,
)


DESCRIPTION = """\
# Phi 3.5 mini ITA ๐Ÿ’ฌ ๐Ÿ‡ฎ๐Ÿ‡น

Fine-tuned version of Microsoft/Phi-3.5-mini-instruct to improve the performance on the Italian language.
Small (3.82 B parameters) but capable model, with 128k context length.

[๐Ÿชช **Model card**](https://huggingface.co/anakin87/Phi-3.5-mini-ITA)
"""

MAX_MAX_NEW_TOKENS = 2048
DEFAULT_MAX_NEW_TOKENS = 1024
MAX_INPUT_TOKEN_LENGTH = int(os.getenv("MAX_INPUT_TOKEN_LENGTH", "4096"))

device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")

model_id = "anakin87/Phi-3.5-mini-ITA"
tokenizer = AutoTokenizer.from_pretrained(model_id, trust_remote_code=True,)
model = AutoModelForCausalLM.from_pretrained(
    model_id,
    device_map="auto",
    torch_dtype=torch.bfloat16,
    attn_implementation="flash_attention_2",
    trust_remote_code=True,
)
model.config.sliding_window = 4096
model.eval()


@spaces.GPU(duration=90)
def generate(
    message: str,
    chat_history: list[tuple[str, str]],
    system_message: str = "",
    max_new_tokens: int = 1024,
    temperature: float = 0.001,
    top_p: float = 1.0,
    top_k: int = 50,
    repetition_penalty: float = 1.0,
) -> Iterator[str]:
    conversation = [{"role": "system", "content": system_message}]
    for user, assistant in chat_history:
        conversation.extend(
            [
                {"role": "user", "content": user},
                {"role": "assistant", "content": assistant},
            ]
        )
    conversation.append({"role": "user", "content": message})

    input_ids = tokenizer.apply_chat_template(conversation, add_generation_prompt=True, return_tensors="pt")
    if input_ids.shape[1] > MAX_INPUT_TOKEN_LENGTH:
        input_ids = input_ids[:, -MAX_INPUT_TOKEN_LENGTH:]
        gr.Warning(f"Trimmed input from conversation as it was longer than {MAX_INPUT_TOKEN_LENGTH} tokens.")
    input_ids = input_ids.to(model.device)

    streamer = TextIteratorStreamer(tokenizer, timeout=20.0, skip_prompt=True, skip_special_tokens=True)
    generate_kwargs = dict(
        {"input_ids": input_ids},
        streamer=streamer,
        max_new_tokens=max_new_tokens,
        do_sample=True,
        top_p=top_p,
        top_k=top_k,
        temperature=temperature,
        num_beams=1,
        repetition_penalty=repetition_penalty,
    )
    t = Thread(target=model.generate, kwargs=generate_kwargs)
    t.start()

    outputs = []
    for text in streamer:
        outputs.append(text)
        yield "".join(outputs)


chat_interface = gr.ChatInterface(
    fn=generate,
    additional_inputs=[
        gr.Textbox(
            value="",
            label="System message",
            render=False,
        ),        
        gr.Slider(
            label="Max new tokens",
            minimum=1,
            maximum=MAX_MAX_NEW_TOKENS,
            step=1,
            value=DEFAULT_MAX_NEW_TOKENS,
        ),
        gr.Slider(
            label="Temperature",
            minimum=0,
            maximum=4.0,
            step=0.1,
            value=0.001,
        ),
        gr.Slider(
            label="Top-p (nucleus sampling)",
            minimum=0.05,
            maximum=1.0,
            step=0.05,
            value=1.0,
        ),
        gr.Slider(
            label="Top-k",
            minimum=1,
            maximum=1000,
            step=1,
            value=50,
        ),
        gr.Slider(
            label="Repetition penalty",
            minimum=1.0,
            maximum=2.0,
            step=0.05,
            value=1.0,
        ),
    ],
    stop_btn=None,
    examples=[
        ["Ciao! Come stai?"],
        ["Pro e contro di una relazione a lungo termine. Elenco puntato con max 3 pro e 3 contro sintetici."],
        ["Quante ore impiega un uomo per mangiare un elicottero?"],
        ["Come si apre un file JSON in Python?"],
        ["Fammi un elenco puntato dei pro e contro di vivere in Italia. Massimo 2 pro e 2 contro."],
        ["Inventa una breve storia con animali sul valore dell'amicizia."],
        ["Scrivi un articolo di 100 parole sui 'Benefici dell'open-source nella ricerca sull'intelligenza artificiale'"],
        ["Can you explain briefly to me what is the Python programming language?"],
        ["How many hours does it take a man to eat a Helicopter?"],
        ["Write a 100-word article on 'Benefits of Open-Source in AI research'"],
    ],
    cache_examples=False,
)

with gr.Blocks(css="style.css", fill_height=True, theme="soft") as demo:
    gr.Markdown(DESCRIPTION)
    gr.DuplicateButton(value="Duplicate Space for private use", elem_id="duplicate-button")
    chat_interface.render()

if __name__ == "__main__":
    demo.queue(max_size=20).launch()