Spaces:
Running
Running
File size: 23,299 Bytes
22f3279 bba6ca7 22f3279 bba6ca7 22f3279 bba6ca7 22f3279 bba6ca7 22f3279 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 |
import pandas as pd
import streamlit as st
import seaborn as sns
import matplotlib.pyplot as plt
import os
import requests
import numpy as np
from datasets import Dataset
from huggingface_hub import hf_hub_download
import matplotlib.patches as mpatches
import matplotlib as mpl
asr_systems_colors_mapping = {
'azure': '#1f77b4', # Blue
'google': '#2ca02c', # Green
'wav2vec2': '#d62728', # Red
'nemo': '#9467bd', # Purple
'assemblyai': '#8c564b', # Brown
'mms': '#e377c2', # Pink
'google_v2': '#7f7f7f', # Gray
'whisper_cloud': '#bcbd22', # Olive
'whisper_local': '#ff7f0e', # Orange
# Add or override other systems and their colors
}
def download_tsv_from_google_sheet(sheet_url):
# Modify the Google Sheet URL to export it as TSV
tsv_url = sheet_url.replace('/edit#gid=', '/export?format=tsv&gid=')
# Send a GET request to download the TSV file
response = requests.get(tsv_url)
response.encoding = 'utf-8'
# Check if the request was successful
if response.status_code == 200:
# Read the TSV content into a pandas DataFrame
from io import StringIO
tsv_content = StringIO(response.text)
df = pd.read_csv(tsv_content, sep='\t', encoding='utf-8')
return df
else:
print("Failed to download the TSV file.")
return None
def generate_path_to_latest_tsv(dataset_name, split, type_of_result):
fn = os.path.join("./data", dataset_name, split, "eval_results-{}-latest.tsv".format(type_of_result))
#print(fn)
return(fn)
@st.cache_data
def read_latest_results(dataset_name, split, codename_to_shortname_mapping):
# Set your Hugging Face API token as an environment variable
# Define the path to your dataset directory
repo_id = os.getenv('HF_SECRET_REPO_ID')
#"michaljunczyk/bigos-eval-results-secret"
dataset = dataset_name
dataset_path = os.path.join("leaderboard_input", dataset, split)
print(dataset_path)
fn_results_per_dataset = 'eval_results-per_dataset-latest.tsv'
fn_results_per_sample = 'eval_results-per_sample-latest.tsv'
fp_results_per_dataset_repo = os.path.join(dataset_path, fn_results_per_dataset)
print(fp_results_per_dataset_repo)
fp_results_per_sample_repo = os.path.join(dataset_path, fn_results_per_sample)
# Download the file from the Hugging Face Hub
local_fp_per_dataset = hf_hub_download(repo_id=repo_id, repo_type='dataset', filename=fp_results_per_dataset_repo, use_auth_token=os.getenv('HF_TOKEN'))
local_fp_per_sample = hf_hub_download(repo_id=repo_id, repo_type='dataset', filename=fp_results_per_sample_repo, use_auth_token=os.getenv('HF_TOKEN'))
# Read the TSV file into a pandas DataFrame
df_per_dataset = pd.read_csv(local_fp_per_dataset, delimiter='\t')
df_per_sample = pd.read_csv(local_fp_per_sample, delimiter='\t')
# Print the DataFrame
print(df_per_dataset)
print(df_per_sample)
#replace column system with Shortname
if (codename_to_shortname_mapping):
df_per_sample['system'] = df_per_sample['system'].replace(codename_to_shortname_mapping)
df_per_dataset['system'] = df_per_dataset['system'].replace(codename_to_shortname_mapping)
return df_per_sample, df_per_dataset
@st.cache_data
def retrieve_asr_systems_meta_from_the_catalog(asr_systems_list):
#print("Retrieving ASR systems metadata for systems: ", asr_systems_list)
#print("Number of systems: ", len(asr_systems_list))
#print("Reading ASR systems catalog")
asr_systems_cat_url = "https://docs.google.com/spreadsheets/d/1fVsE98Ulmt-EIEe4wx8sUdo7RLigDdAVjQxNpAJIrH8/edit#gid=681521237"
#print("Reading the catalog from: ", asr_systems_cat_url)
catalog = download_tsv_from_google_sheet(asr_systems_cat_url)
#print("ASR systems catalog read")
#print("Catalog contains information about {} ASR systems".format(len(catalog)))
##print("Catalog columns: ", catalog.columns)
##print("ASR systems available in the catalog: ", catalog["Codename"] )
#print("Filter only the systems we are interested in")
catalog = catalog[(catalog["Codename"].isin(asr_systems_list)) | (catalog["Shortname"].isin(asr_systems_list))]
return catalog
def basic_stats_per_dimension(df_input, metric, dimension):
#Median value
df_median = df_input.groupby(dimension)[metric].median().sort_values().round(2)
#Average value
df_avg = df_input.groupby(dimension)[metric].mean().sort_values().round(2)
#Standard deviation
df_std = df_input.groupby(dimension)[metric].std().sort_values().round(2)
# Min
df_min = df_input.groupby(dimension)[metric].min().sort_values().round(2)
# Max
df_max = df_input.groupby(dimension)[metric].max().sort_values().round(2)
# concatanate all WER statistics
df_stats = pd.concat([df_median, df_avg, df_std, df_min, df_max], axis=1)
df_stats.columns = ["med_{}".format(metric), "avg_{}".format(metric), "std_{}".format(metric), "min_{}".format(metric), "max_{}".format(metric)]
# sort by median values
df_stats = df_stats.sort_values(by="med_{}".format(metric))
return df_stats
def ser_from_per_sample_results(df_per_sample, dimension):
# group by dimension e.g dataset or sample and calculate fraction of samples with WER equal to 0
df_ser = df_per_sample.groupby(dimension)["WER"].apply(lambda x: (x != 0).mean()*100).sort_values().round(2)
# change column names
df_ser.name = "SER"
return df_ser
def get_total_audio_duration(df_per_sample):
# filter the df_per_sample dataframe to leave only unique audio recordings
df_per_sample_unique_audio = df_per_sample.drop_duplicates(subset='id')
# calculate the total size of the dataset in hours based on the list of unique audio recordings
total_duration_hours = df_per_sample_unique_audio['audio_duration'].sum() / 3600
#print(f"Total duration of the dataset: {total_duration_hours:.2f} hours")
return total_duration_hours
def extend_meta_per_sample_words_chars(df_per_sample):
# extend the results with the number of words in the reference and hypothesis
df_per_sample['ref_words'] = df_per_sample['ref'].apply(lambda x: len(x.split()))
df_per_sample['hyp_words'] = df_per_sample['hyp'].apply(lambda x: len(x.split()))
# extend the df_per_sample with the number of words per seconds (based on duration column) for reference and hypothesis
df_per_sample['ref_wps'] = df_per_sample['ref_words'] / df_per_sample['audio_duration'].round(2)
df_per_sample['hyp_wps'] = df_per_sample['hyp_words'] / df_per_sample['audio_duration'].round(2)
# extend the df_per_sample with the number of characters per seconds (based on duration column) for reference and hypothesis
df_per_sample['ref_cps'] = df_per_sample['ref'].apply(lambda x: len(x)) / df_per_sample['audio_duration'].round(2)
df_per_sample['hyp_cps'] = df_per_sample['hyp'].apply(lambda x: len(x)) / df_per_sample['audio_duration'].round(2)
# extend the df_per_sample with the number of characters per words for reference and hypothesis
df_per_sample['ref_cpw'] = df_per_sample['ref'].apply(lambda x: len(x)) / df_per_sample['ref_words'].round(2)
df_per_sample['hyp_cpw'] = df_per_sample['hyp'].apply(lambda x: len(x)) / df_per_sample['hyp_words'].round(2)
# extend metadata with number of words and characters
return df_per_sample
def filter_top_outliers(df_input, metric, max_threshold):
# filter out outliers exceeding max_threshold
df_filtered = df_input[df_input[metric] < max_threshold]
return df_filtered
def filter_bottom_outliers(df_input, metric, min_threshold):
# filter out outliers below min_threshold
df_filtered = df_input[df_input[metric] > min_threshold]
return df_filtered
def box_plot_per_dimension(df_input, metric, dimension, title, xlabel, ylabel):
# Box plot for WER per dataset
fig, ax = plt.subplots(figsize=(20, 10))
# generate box plot without outliers
sns.boxplot(x=dimension, y=metric, data=df_input, order=df_input.groupby(dimension)[metric].median().sort_values().index, showfliers=False)
plt.title(title)
plt.xlabel(xlabel)
plt.ylabel(ylabel)
plt.xticks(rotation=90)
#return figure
return plt
def box_plot_per_dimension_with_colors(df_input, metric, dimension, title, xlabel, ylabel, system_col, type_col):
# Create a figure and axis object
fig, ax = plt.subplots(figsize=(12, 8))
# Define the order of categories based on the median of the metric
order = df_input.groupby(dimension)[metric].median().sort_values().index.tolist()
# Create custom color mapping for systems
unique_systems = df_input[system_col].unique()
# Define your custom colors here
system_color_mapping = asr_systems_colors_mapping
# For systems not specified, assign colors from a palette
remaining_systems = [s for s in unique_systems if s not in system_color_mapping]
palette = sns.color_palette("tab10", len(remaining_systems))
system_color_mapping.update(dict(zip(remaining_systems, palette)))
# Create hatching patterns for types
unique_types = df_input[type_col].unique()
type_hatch_mapping = {
'free': '', # No hatching
'commercial': '///', # Diagonal hatching
# Add more patterns if needed
}
# For types not specified, assign default hatches
default_hatches = ['', '///', '\\\\', 'xx', '++', '--', '...']
for idx, t in enumerate(unique_types):
if t not in type_hatch_mapping:
type_hatch_mapping[t] = default_hatches[idx % len(default_hatches)]
# Map colors and hatches to each dimension based on system and type
dimension_system_mapping = df_input.drop_duplicates(subset=dimension).set_index(dimension)[system_col].reindex(order)
colors = dimension_system_mapping.map(system_color_mapping).tolist()
dimension_type_mapping = df_input.drop_duplicates(subset=dimension).set_index(dimension)[type_col].reindex(order)
hatches = dimension_type_mapping.map(type_hatch_mapping).tolist()
# Generate box plot without specifying hue
sns.boxplot(
x=dimension,
y=metric,
data=df_input,
order=order,
ax=ax,
showfliers=False,
linewidth=1.5,
boxprops=dict(facecolor='white') # Set initial facecolor to white
)
# Access the box artists
box_patches = [patch for patch in ax.artists if isinstance(patch, mpatches.PathPatch)]
# Alternatively, you can use ax.patches if ax.artists doesn't work
if not box_patches:
box_patches = [patch for patch in ax.patches if isinstance(patch, mpatches.PathPatch)]
# Color the boxes and apply hatching patterns
for patch, color, hatch in zip(box_patches, colors, hatches):
patch.set_facecolor(color)
patch.set_edgecolor('black')
patch.set_linewidth(1.5)
patch.set_hatch(hatch)
# Create custom legend for systems (colors)
system_handles = []
for system in unique_systems:
color = system_color_mapping[system]
handle = mpatches.Patch(facecolor=color, edgecolor='black', label=system)
system_handles.append(handle)
# Create custom legend for types (hatching patterns)
type_handles = []
for typ in unique_types:
hatch = type_hatch_mapping[typ]
handle = mpatches.Patch(facecolor='white', edgecolor='black', hatch=hatch, label=typ)
type_handles.append(handle)
# Add legends to the plot
legend1 = ax.legend(handles=system_handles, title='System', bbox_to_anchor=(0.01, 1), loc='upper left')
legend2 = ax.legend(handles=type_handles, title='Type', bbox_to_anchor=(0.01, 0.6), loc='upper left')
ax.add_artist(legend1) # Add the first legend back to the plot
ax.set_title(title)
ax.set_xlabel(xlabel)
ax.set_ylabel(ylabel)
# improve readibility of the x-axis labels
# decrease the font size of x-axis labels
ax.tick_params(axis='x', labelsize=8)
# shift left to align the x-axis labels with the boxes
ax.set_xticklabels(ax.get_xticklabels(), ha='right')
# rotate them by 90 degrees
ax.set_xticklabels(ax.get_xticklabels(), rotation=55)
# add more granularity to the y-axis. Make sure the y-axis contains 20 ticks
ax.yaxis.set_major_locator(plt.MaxNLocator(20))
plt.tight_layout()
# Return the figure object
return fig
def check_impact_of_normalization(data_in, ref_type='orig'):
# Filter the data to include only the specific reference type
data_ref_type = data_in[data_in['ref_type'] == ref_type]
data = data_ref_type.drop(columns=['system','subset', 'ref_type'])
# Calculate the average impact of each normalization type on the metrics
average_impact = data.groupby('norm_type').mean()
baseline_metrics = average_impact.loc['none']
# Calculate the difference in metrics compared to the baseline
difference_metrics = average_impact.subtract(baseline_metrics)
# Removing the baseline row for clarity
difference_metrics = difference_metrics.drop(index='none')
# Rounding the results to 2 decimal places
difference_metrics_rounded = difference_metrics.round(2)
# add column with average impact on error reduction for all metric types
difference_metrics_rounded['Average'] = difference_metrics_rounded.mean(axis=1).round(2)
# Sorting the results based on the average impact on error reduction. The lower the absolute value, the higher the impact
difference_metrics_sorted_abs = difference_metrics_rounded.sort_values(by='Average', key=abs)
# Display the resulting differences
return(difference_metrics_sorted_abs)
def calculate_wer_per_meta_category(df_per_sample, selected_systems, metric, analysis_dimension = 'speaker_gender'):
# filter out from df_per_sample rows where analysis_dimension is null
df_per_sample_dimension = df_per_sample[df_per_sample[analysis_dimension].notnull()]
#print(df_per_sample_dimension)
meta_values = df_per_sample_dimension[analysis_dimension].unique()
if (analysis_dimension == 'speaker_age'):
# sort values in the meta_values list, so the order of the values is consistent, starting from teens, twenties, thirties, fourties, fifties, sixties, seventies, eighties, nineties
# Example usage:
sorted_values = sort_age_categories(meta_values)
#print(sorted_values)
print("meta values sorted:", sorted_values)
meta_values = sorted_values
# calculate number of available systems for specific category
#print(df_per_sample_dimension)
# create table with number of samples in df_per_sample_single_system for each meta category from meta_values
df_per_sample_single_system = df_per_sample_dimension[df_per_sample['system'] == selected_systems[0]]
# select the value with the smallest number of available samples for all systems
min_samples = 0
df_available_samples_per_category_per_system = {}
for system in selected_systems:
df_per_sample_single_system = df_per_sample_dimension[df_per_sample['system'] == system]
df_available_samples_per_category_per_system[system] = df_per_sample_single_system.groupby(analysis_dimension)[metric].count().reset_index()
df_available_samples_per_category_per_system[system] = df_available_samples_per_category_per_system[system].rename(columns={metric: 'available_samples'})
# replace index with values from analysis_dimension
df_available_samples_per_category_per_system[system] = df_available_samples_per_category_per_system[system].set_index(analysis_dimension)
#print(df_available_samples_per_category_per_system[system])
min_samples_system = df_available_samples_per_category_per_system[system]['available_samples'].min()
if (min_samples_system < min_samples) or (min_samples == 0):
min_samples = min_samples_system
#print(min_samples)
# get the subset of the df_per_sample_dimension with results for all systems to analyze
df_per_sample_selected_systems = df_per_sample_dimension[df_per_sample['system'].isin(selected_systems)]
#print(df_per_sample_selected_systems)
# select equal number of samples for each system and analysis_dimension equal to the number of samples for the dimension with the smallest number of samples (min_samples)
df_per_sample_selected_systems = df_per_sample_selected_systems.groupby(['system',analysis_dimension]).apply(lambda x: x.sample(min_samples)).reset_index(drop=True)
#print(df_per_sample_selected_systems)
df_per_sample_metric_dimension = df_per_sample_selected_systems.groupby(['system', analysis_dimension])[metric].mean().round(2).reset_index()
df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension.pivot(index=analysis_dimension, columns='system', values=metric)
df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot.round(2)
# add row with the difference between the male and female metric values for values. Add "Difference" row at the end of the dataframe to the index
# calculate the difference between the smallest and largest metric values
# if there are only two values in the analysis_dimension, calculate the difference between them
if len(meta_values) == 2:
gap_metrics = ['Difference']
df_per_sample_metric_dimension_pivot.loc[gap_metrics[0]] = df_per_sample_metric_dimension_pivot.loc[meta_values[0]] - df_per_sample_metric_dimension_pivot.loc[meta_values[1]]
# if there are more than two values in the analysis_dimension, calculate the difference between the smallest and the largest value
elif len(meta_values) > 2:
gap_metrics = ['Std Dev', 'MAD', 'Range']
metrics = pd.DataFrame([])
df = df_per_sample_metric_dimension_pivot
print(df)
# calculate the standard deviation of the metric values
metrics[gap_metrics[0]] = df.std()
# calculate the mean absolute deviation of the metric values
metrics[gap_metrics[1]] = df.apply(lambda x: np.mean(np.abs(x - np.mean(x))), axis=0)
# calculate the difference between the smallest and largest metric values
metrics[gap_metrics[2]] = df.max() - df.min()
metrics_t = metrics.round(2).transpose()
print(metrics_t)
#concatante the metrics dataframe to the df_per_sample_metric_dimension_pivot
df_per_sample_metric_dimension_pivot = pd.concat([df_per_sample_metric_dimension_pivot, metrics_t], axis=0)
print(df_per_sample_metric_dimension_pivot)
# transpose the dataframe to have systems as rows
# sort by the average difference from the smallest to the largest value
df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot.transpose()
df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot.sort_values(by=gap_metrics[0], axis=0)
# add average, median and standard deviation as the last 3 rows to the dataframe
# calculate average, median, and standard deviation of the difference between the smallest and largest metric values
avg_difference = df_per_sample_metric_dimension_pivot.mean().round(2)
median_difference = df_per_sample_metric_dimension_pivot.median().round(2)
std_difference = df_per_sample_metric_dimension_pivot.std().round(2)
# add average, median, and standard deviation as the last 3 rows to the dataframe
df_per_sample_metric_dimension_pivot.loc['median'] = median_difference
df_per_sample_metric_dimension_pivot.loc['average'] = avg_difference
df_per_sample_metric_dimension_pivot.loc['std'] = std_difference
analyzed_samples_per_category = min_samples
# round all values to 2 decimal places
df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot.round(2)
# keep the order of columns as in the meta_values list
columns = list(meta_values) + gap_metrics
print(columns)
df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot[columns]
return df_per_sample_metric_dimension_pivot, df_available_samples_per_category_per_system, analyzed_samples_per_category
def sort_age_categories(meta_values):
order = ["teens", "twenties", "thirties", "fourties", "fifties", "sixties", "seventies", "eighties", "nineties"]
order_dict = {age: index for index, age in enumerate(order)}
sorted_values = sorted(meta_values, key=lambda x: order_dict.get(x, float('inf')))
return sorted_values
def calculate_wer_per_audio_feature(df_per_sample, selected_systems, audio_feature_to_analyze, metric, no_of_buckets):
# filter out results for selected systems
print(df_per_sample)
feature_values_uniq = df_per_sample[audio_feature_to_analyze].unique()
df_per_sample_selected_systems = df_per_sample[df_per_sample['system'].isin(selected_systems)]
# create buckets based on speech rate words unique values (min, max,step)
min_feature_value = round(min(feature_values_uniq), 1)
max_feature_value = round(max(feature_values_uniq), 1)
step = max_feature_value / no_of_buckets
audio_feature_buckets = [min_feature_value + i * step for i in range(no_of_buckets)]
# add column with speech_rate_words rounded to nearest bucket value.
# map audio duration to the closest bucket
df_per_sample[audio_feature_to_analyze + '_bucket'] = df_per_sample[audio_feature_to_analyze].apply(
lambda x: min(audio_feature_buckets, key=lambda y: abs(x - y)))
# calculate average WER per audio duration bucket
df_per_sample_wer_feature = df_per_sample_selected_systems.groupby(['system', audio_feature_to_analyze])[metric].mean().reset_index()
# add column with number of samples for specific audio bucket size
df_per_sample_wer_feature['number_of_samples'] = df_per_sample_selected_systems.groupby(['system', audio_feature_to_analyze])[metric].count().values
df_per_sample_wer_feature = df_per_sample_wer_feature.sort_values(by=audio_feature_to_analyze)
# round values in WER column in df_per_sample_wer to 2 decimal places
df_per_sample_wer_feature[metric].round(2)
# transform df_per_sample_wer. Use system values as columns, while audio_duration_buckets as main index
df_per_sample_wer_feature_pivot = df_per_sample_wer_feature.pivot(index=audio_feature_to_analyze, columns='system', values=metric)
df_per_sample_wer_feature_pivot = df_per_sample_wer_feature_pivot.round(2)
df_per_sample_wer_feature_pivot['number_of_samples'] = df_per_sample_wer_feature[
df_per_sample_wer_feature['system'] == selected_systems[0]].groupby(audio_feature_to_analyze)[
'number_of_samples'].sum().values
# put number_of_samples as the first column after index
df_per_sample_wer_feature_pivot = df_per_sample_wer_feature_pivot[
['number_of_samples'] + [col for col in df_per_sample_wer_feature_pivot.columns if col != 'number_of_samples']]
return df_per_sample_wer_feature_pivot, df_per_sample_wer_feature |