File size: 23,299 Bytes
22f3279
 
 
 
 
 
 
 
 
bba6ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
bba6ca7
22f3279
 
 
 
 
 
 
 
 
 
 
bba6ca7
 
 
22f3279
bba6ca7
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
22f3279
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
import pandas as pd
import streamlit as st
import seaborn as sns
import matplotlib.pyplot as plt
import os
import requests
import numpy as np  
from datasets import Dataset
from huggingface_hub import hf_hub_download
import matplotlib.patches as mpatches
import matplotlib as mpl


asr_systems_colors_mapping = {
        'azure': '#1f77b4',     # Blue
        'google': '#2ca02c',    # Green
        'wav2vec2': '#d62728',  # Red
        'nemo': '#9467bd',      # Purple
        'assemblyai': '#8c564b',  # Brown
        'mms': '#e377c2',       # Pink
        'google_v2': '#7f7f7f', # Gray
        'whisper_cloud': '#bcbd22',  # Olive
        'whisper_local': '#ff7f0e',   # Orange
        
        # Add or override other systems and their colors
    }

def download_tsv_from_google_sheet(sheet_url):
    # Modify the Google Sheet URL to export it as TSV
    tsv_url = sheet_url.replace('/edit#gid=', '/export?format=tsv&gid=')
    
    # Send a GET request to download the TSV file
    response = requests.get(tsv_url)
    response.encoding = 'utf-8'

    # Check if the request was successful
    if response.status_code == 200:
        # Read the TSV content into a pandas DataFrame
        from io import StringIO
        tsv_content = StringIO(response.text)
        df = pd.read_csv(tsv_content, sep='\t', encoding='utf-8')
        return df
    else:
        print("Failed to download the TSV file.")
        return None
    
def generate_path_to_latest_tsv(dataset_name, split, type_of_result):
    fn = os.path.join("./data", dataset_name, split, "eval_results-{}-latest.tsv".format(type_of_result))
    #print(fn)
    return(fn)

@st.cache_data
def read_latest_results(dataset_name, split, codename_to_shortname_mapping):

    # Set your Hugging Face API token as an environment variable
    # Define the path to your dataset directory
    repo_id = os.getenv('HF_SECRET_REPO_ID')
    #"michaljunczyk/bigos-eval-results-secret"

    dataset = dataset_name
    
    dataset_path = os.path.join("leaderboard_input", dataset, split)
    print(dataset_path)

    fn_results_per_dataset = 'eval_results-per_dataset-latest.tsv'
    fn_results_per_sample = 'eval_results-per_sample-latest.tsv'

    fp_results_per_dataset_repo = os.path.join(dataset_path, fn_results_per_dataset)
    print(fp_results_per_dataset_repo)
    fp_results_per_sample_repo = os.path.join(dataset_path, fn_results_per_sample)

    # Download the file from the Hugging Face Hub
    local_fp_per_dataset = hf_hub_download(repo_id=repo_id, repo_type='dataset', filename=fp_results_per_dataset_repo, use_auth_token=os.getenv('HF_TOKEN'))
    local_fp_per_sample = hf_hub_download(repo_id=repo_id, repo_type='dataset', filename=fp_results_per_sample_repo, use_auth_token=os.getenv('HF_TOKEN'))

    # Read the TSV file into a pandas DataFrame
    df_per_dataset = pd.read_csv(local_fp_per_dataset, delimiter='\t')
    df_per_sample = pd.read_csv(local_fp_per_sample, delimiter='\t')

    # Print the DataFrame
    print(df_per_dataset)
    print(df_per_sample)

    #replace column system with Shortname
    if (codename_to_shortname_mapping):
        df_per_sample['system'] = df_per_sample['system'].replace(codename_to_shortname_mapping)
        df_per_dataset['system'] = df_per_dataset['system'].replace(codename_to_shortname_mapping)

    return df_per_sample, df_per_dataset

@st.cache_data
def retrieve_asr_systems_meta_from_the_catalog(asr_systems_list):
    #print("Retrieving ASR systems metadata for systems: ", asr_systems_list)
    #print("Number of systems: ", len(asr_systems_list))

    #print("Reading ASR systems catalog")
    asr_systems_cat_url = "https://docs.google.com/spreadsheets/d/1fVsE98Ulmt-EIEe4wx8sUdo7RLigDdAVjQxNpAJIrH8/edit#gid=681521237"
    #print("Reading the catalog from: ", asr_systems_cat_url)
    catalog = download_tsv_from_google_sheet(asr_systems_cat_url)
    #print("ASR systems catalog read")
    #print("Catalog contains information about {} ASR systems".format(len(catalog)))
    ##print("Catalog columns: ", catalog.columns)
    ##print("ASR systems available in the catalog: ", catalog["Codename"] )

    #print("Filter only the systems we are interested in")
    catalog = catalog[(catalog["Codename"].isin(asr_systems_list)) | (catalog["Shortname"].isin(asr_systems_list))]

    return catalog

def basic_stats_per_dimension(df_input, metric, dimension):
    
    #Median value
    df_median = df_input.groupby(dimension)[metric].median().sort_values().round(2)

    #Average value 
    df_avg = df_input.groupby(dimension)[metric].mean().sort_values().round(2)

    #Standard deviation 
    df_std = df_input.groupby(dimension)[metric].std().sort_values().round(2)

    # Min
    df_min = df_input.groupby(dimension)[metric].min().sort_values().round(2)
    
    # Max
    df_max = df_input.groupby(dimension)[metric].max().sort_values().round(2)

    # concatanate all WER statistics
    df_stats = pd.concat([df_median, df_avg, df_std, df_min, df_max], axis=1)
    df_stats.columns = ["med_{}".format(metric), "avg_{}".format(metric), "std_{}".format(metric), "min_{}".format(metric), "max_{}".format(metric)]

    # sort by median values
    df_stats = df_stats.sort_values(by="med_{}".format(metric))

    return df_stats

def ser_from_per_sample_results(df_per_sample, dimension):
    # group by dimension e.g dataset or sample and calculate fraction of samples with WER equal to 0
    df_ser = df_per_sample.groupby(dimension)["WER"].apply(lambda x: (x != 0).mean()*100).sort_values().round(2)
    # change column names
    df_ser.name = "SER"
    return df_ser

def get_total_audio_duration(df_per_sample):
    # filter the df_per_sample dataframe to leave only unique audio recordings
    df_per_sample_unique_audio = df_per_sample.drop_duplicates(subset='id')
    # calculate the total size of the dataset in hours based on the list of unique audio recordings
    total_duration_hours = df_per_sample_unique_audio['audio_duration'].sum() / 3600
    #print(f"Total duration of the dataset: {total_duration_hours:.2f} hours")
    return total_duration_hours

def extend_meta_per_sample_words_chars(df_per_sample):

    # extend the results with the number of words in the reference and hypothesis
    df_per_sample['ref_words'] = df_per_sample['ref'].apply(lambda x: len(x.split()))
    df_per_sample['hyp_words'] = df_per_sample['hyp'].apply(lambda x: len(x.split()))

    # extend the df_per_sample with the number of words per seconds (based on duration column) for reference and hypothesis
    df_per_sample['ref_wps'] = df_per_sample['ref_words'] / df_per_sample['audio_duration'].round(2)
    df_per_sample['hyp_wps'] = df_per_sample['hyp_words'] / df_per_sample['audio_duration'].round(2)

    # extend the df_per_sample with the number of characters per seconds (based on duration column) for reference and hypothesis
    df_per_sample['ref_cps'] = df_per_sample['ref'].apply(lambda x: len(x)) / df_per_sample['audio_duration'].round(2)
    df_per_sample['hyp_cps'] = df_per_sample['hyp'].apply(lambda x: len(x)) / df_per_sample['audio_duration'].round(2)

    # extend the df_per_sample with the number of characters per words for reference and hypothesis
    df_per_sample['ref_cpw'] = df_per_sample['ref'].apply(lambda x: len(x)) / df_per_sample['ref_words'].round(2)
    df_per_sample['hyp_cpw'] = df_per_sample['hyp'].apply(lambda x: len(x)) / df_per_sample['hyp_words'].round(2)

    # extend metadata with number of words and characters
    return df_per_sample

def filter_top_outliers(df_input, metric, max_threshold):
    # filter out outliers exceeding max_threshold
    df_filtered = df_input[df_input[metric] < max_threshold]
    return df_filtered

def filter_bottom_outliers(df_input, metric, min_threshold):
    # filter out outliers below min_threshold
    df_filtered = df_input[df_input[metric] > min_threshold]
    return df_filtered

def box_plot_per_dimension(df_input, metric, dimension, title, xlabel, ylabel):
    # Box plot for WER per dataset
    fig, ax = plt.subplots(figsize=(20, 10))

    # generate box plot without outliers    
    sns.boxplot(x=dimension, y=metric, data=df_input, order=df_input.groupby(dimension)[metric].median().sort_values().index, showfliers=False)
    
    plt.title(title)
    plt.xlabel(xlabel)
    plt.ylabel(ylabel)
    plt.xticks(rotation=90)
    #return figure
    return plt

def box_plot_per_dimension_with_colors(df_input, metric, dimension, title, xlabel, ylabel, system_col, type_col):
    # Create a figure and axis object
    fig, ax = plt.subplots(figsize=(12, 8))
    
    # Define the order of categories based on the median of the metric
    order = df_input.groupby(dimension)[metric].median().sort_values().index.tolist()
    
    # Create custom color mapping for systems
    unique_systems = df_input[system_col].unique()
    # Define your custom colors here
    system_color_mapping = asr_systems_colors_mapping
    # For systems not specified, assign colors from a palette
    remaining_systems = [s for s in unique_systems if s not in system_color_mapping]
    palette = sns.color_palette("tab10", len(remaining_systems))
    system_color_mapping.update(dict(zip(remaining_systems, palette)))
    
    # Create hatching patterns for types
    unique_types = df_input[type_col].unique()
    type_hatch_mapping = {
        'free': '',             # No hatching
        'commercial': '///',    # Diagonal hatching
        # Add more patterns if needed
    }
    # For types not specified, assign default hatches
    default_hatches = ['', '///', '\\\\', 'xx', '++', '--', '...']
    for idx, t in enumerate(unique_types):
        if t not in type_hatch_mapping:
            type_hatch_mapping[t] = default_hatches[idx % len(default_hatches)]
    
    # Map colors and hatches to each dimension based on system and type
    dimension_system_mapping = df_input.drop_duplicates(subset=dimension).set_index(dimension)[system_col].reindex(order)
    colors = dimension_system_mapping.map(system_color_mapping).tolist()
    
    dimension_type_mapping = df_input.drop_duplicates(subset=dimension).set_index(dimension)[type_col].reindex(order)
    hatches = dimension_type_mapping.map(type_hatch_mapping).tolist()
    
    # Generate box plot without specifying hue
    sns.boxplot(
        x=dimension,
        y=metric,
        data=df_input,
        order=order,
        ax=ax,
        showfliers=False,
        linewidth=1.5,
        boxprops=dict(facecolor='white')  # Set initial facecolor to white
    )
    
    # Access the box artists
    box_patches = [patch for patch in ax.artists if isinstance(patch, mpatches.PathPatch)]
    # Alternatively, you can use ax.patches if ax.artists doesn't work
    if not box_patches:
        box_patches = [patch for patch in ax.patches if isinstance(patch, mpatches.PathPatch)]
    
    # Color the boxes and apply hatching patterns
    for patch, color, hatch in zip(box_patches, colors, hatches):
        patch.set_facecolor(color)
        patch.set_edgecolor('black')
        patch.set_linewidth(1.5)
        patch.set_hatch(hatch)
    
    # Create custom legend for systems (colors)
    system_handles = []
    for system in unique_systems:
        color = system_color_mapping[system]
        handle = mpatches.Patch(facecolor=color, edgecolor='black', label=system)
        system_handles.append(handle)
    
    # Create custom legend for types (hatching patterns)
    type_handles = []
    for typ in unique_types:
        hatch = type_hatch_mapping[typ]
        handle = mpatches.Patch(facecolor='white', edgecolor='black', hatch=hatch, label=typ)
        type_handles.append(handle)
    
    # Add legends to the plot
    legend1 = ax.legend(handles=system_handles, title='System', bbox_to_anchor=(0.01, 1), loc='upper left')
    legend2 = ax.legend(handles=type_handles, title='Type', bbox_to_anchor=(0.01, 0.6), loc='upper left')
    ax.add_artist(legend1)  # Add the first legend back to the plot
    
    ax.set_title(title)
    ax.set_xlabel(xlabel)
    ax.set_ylabel(ylabel)
    # improve readibility of the x-axis labels
    # decrease the font size of x-axis labels 
    ax.tick_params(axis='x', labelsize=8)
    # shift left to align the x-axis labels with the boxes
    ax.set_xticklabels(ax.get_xticklabels(), ha='right') 

    # rotate them by 90 degrees
    ax.set_xticklabels(ax.get_xticklabels(), rotation=55)

    # add more granularity to the y-axis. Make sure the y-axis contains 20 ticks
    ax.yaxis.set_major_locator(plt.MaxNLocator(20))

    plt.tight_layout()
    
    # Return the figure object
    return fig

   
def check_impact_of_normalization(data_in, ref_type='orig'):

    # Filter the data to include only the specific reference type
    data_ref_type = data_in[data_in['ref_type'] == ref_type]

    data = data_ref_type.drop(columns=['system','subset', 'ref_type'])

    # Calculate the average impact of each normalization type on the metrics
    average_impact = data.groupby('norm_type').mean()
    baseline_metrics = average_impact.loc['none']

    # Calculate the difference in metrics compared to the baseline
    difference_metrics = average_impact.subtract(baseline_metrics)

    # Removing the baseline row for clarity
    difference_metrics = difference_metrics.drop(index='none')

    # Rounding the results to 2 decimal places
    difference_metrics_rounded = difference_metrics.round(2)

    # add column with average impact on error reduction for all metric types
    difference_metrics_rounded['Average'] = difference_metrics_rounded.mean(axis=1).round(2)

    # Sorting the results based on the average impact on error reduction. The lower the absolute value, the higher the impact
    difference_metrics_sorted_abs = difference_metrics_rounded.sort_values(by='Average', key=abs)

    # Display the resulting differences
    return(difference_metrics_sorted_abs)



def calculate_wer_per_meta_category(df_per_sample, selected_systems, metric, analysis_dimension = 'speaker_gender'):
    # filter out from df_per_sample rows where analysis_dimension is null
    df_per_sample_dimension = df_per_sample[df_per_sample[analysis_dimension].notnull()]
    #print(df_per_sample_dimension)

    meta_values = df_per_sample_dimension[analysis_dimension].unique()

    if (analysis_dimension == 'speaker_age'):
        # sort values in the meta_values list, so the order of the values is consistent, starting from teens, twenties, thirties, fourties, fifties, sixties, seventies, eighties, nineties
        # Example usage:
        sorted_values = sort_age_categories(meta_values)
        #print(sorted_values)
        print("meta values sorted:", sorted_values)
        meta_values = sorted_values

    # calculate number of available systems for specific category
    #print(df_per_sample_dimension)
    # create table with number of samples in df_per_sample_single_system for each meta category from meta_values
    df_per_sample_single_system = df_per_sample_dimension[df_per_sample['system'] == selected_systems[0]]

    # select the value with the smallest number of available samples for all systems
    min_samples = 0
    df_available_samples_per_category_per_system = {}
    for system in selected_systems:
        df_per_sample_single_system = df_per_sample_dimension[df_per_sample['system'] == system]
        df_available_samples_per_category_per_system[system] = df_per_sample_single_system.groupby(analysis_dimension)[metric].count().reset_index()
        df_available_samples_per_category_per_system[system] = df_available_samples_per_category_per_system[system].rename(columns={metric: 'available_samples'})
        # replace index with values from analysis_dimension
        df_available_samples_per_category_per_system[system] = df_available_samples_per_category_per_system[system].set_index(analysis_dimension)    
        #print(df_available_samples_per_category_per_system[system])

        min_samples_system = df_available_samples_per_category_per_system[system]['available_samples'].min()
        if (min_samples_system < min_samples) or (min_samples == 0):
            min_samples = min_samples_system
            #print(min_samples)

    # get the subset of the df_per_sample_dimension with results for all systems to analyze
    df_per_sample_selected_systems = df_per_sample_dimension[df_per_sample['system'].isin(selected_systems)]
    #print(df_per_sample_selected_systems)
    
    # select equal number of samples for each system and analysis_dimension equal to the number of samples for the dimension with the smallest number of samples (min_samples)
    df_per_sample_selected_systems = df_per_sample_selected_systems.groupby(['system',analysis_dimension]).apply(lambda x: x.sample(min_samples)).reset_index(drop=True)
    
    #print(df_per_sample_selected_systems)

    df_per_sample_metric_dimension = df_per_sample_selected_systems.groupby(['system', analysis_dimension])[metric].mean().round(2).reset_index()



    df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension.pivot(index=analysis_dimension, columns='system', values=metric)
    df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot.round(2)


    # add row with the difference between the male and female metric values for values. Add "Difference" row at the end of the dataframe to the index
    # calculate the difference between the smallest and largest metric values
    # if there are only two values in the analysis_dimension, calculate the difference between them
    if len(meta_values) == 2:
        gap_metrics = ['Difference']
        df_per_sample_metric_dimension_pivot.loc[gap_metrics[0]] = df_per_sample_metric_dimension_pivot.loc[meta_values[0]] - df_per_sample_metric_dimension_pivot.loc[meta_values[1]]
        
    # if there are more than two values in the analysis_dimension, calculate the difference between the smallest and the largest value
    elif len(meta_values) > 2:
        gap_metrics = ['Std Dev', 'MAD', 'Range']
  
        metrics = pd.DataFrame([])
        df = df_per_sample_metric_dimension_pivot

        print(df)
        # calculate the standard deviation of the metric values
        metrics[gap_metrics[0]] = df.std()
        # calculate the mean absolute deviation of the metric values
        metrics[gap_metrics[1]] = df.apply(lambda x: np.mean(np.abs(x - np.mean(x))), axis=0)

        # calculate the difference between the smallest and largest metric values
        metrics[gap_metrics[2]] = df.max() - df.min()

        metrics_t = metrics.round(2).transpose()
        print(metrics_t)

        #concatante the metrics dataframe to the df_per_sample_metric_dimension_pivot
        df_per_sample_metric_dimension_pivot = pd.concat([df_per_sample_metric_dimension_pivot, metrics_t], axis=0)

    
    print(df_per_sample_metric_dimension_pivot)

    # transpose the dataframe to have systems as rows
    # sort by the average difference from the smallest to the largest value
    df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot.transpose()
    df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot.sort_values(by=gap_metrics[0], axis=0)

    # add average, median and standard deviation as the last 3 rows to the dataframe
    # calculate average, median, and standard deviation of the difference between the smallest and largest metric values
    avg_difference = df_per_sample_metric_dimension_pivot.mean().round(2)
    median_difference = df_per_sample_metric_dimension_pivot.median().round(2)
    std_difference = df_per_sample_metric_dimension_pivot.std().round(2)
    
    # add average, median, and standard deviation as the last 3 rows to the dataframe
    df_per_sample_metric_dimension_pivot.loc['median'] = median_difference
    df_per_sample_metric_dimension_pivot.loc['average'] = avg_difference
    df_per_sample_metric_dimension_pivot.loc['std'] = std_difference
    
    analyzed_samples_per_category = min_samples

    # round all values to 2 decimal places
    df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot.round(2)

    # keep the order of columns as in the meta_values list
    columns = list(meta_values) + gap_metrics
    print(columns)
    df_per_sample_metric_dimension_pivot = df_per_sample_metric_dimension_pivot[columns]

    return df_per_sample_metric_dimension_pivot, df_available_samples_per_category_per_system, analyzed_samples_per_category

def sort_age_categories(meta_values):
    order = ["teens", "twenties", "thirties", "fourties", "fifties", "sixties", "seventies", "eighties", "nineties"]
    order_dict = {age: index for index, age in enumerate(order)}

    sorted_values = sorted(meta_values, key=lambda x: order_dict.get(x, float('inf')))
    return sorted_values


def calculate_wer_per_audio_feature(df_per_sample, selected_systems, audio_feature_to_analyze, metric, no_of_buckets):
    # filter out results for selected systems
    print(df_per_sample)

    feature_values_uniq = df_per_sample[audio_feature_to_analyze].unique()
    df_per_sample_selected_systems = df_per_sample[df_per_sample['system'].isin(selected_systems)]

    # create buckets based on speech rate words unique values (min, max,step)
    min_feature_value = round(min(feature_values_uniq), 1)
    max_feature_value = round(max(feature_values_uniq), 1)
    step = max_feature_value / no_of_buckets
    audio_feature_buckets = [min_feature_value + i * step for i in range(no_of_buckets)]

    # add column with speech_rate_words rounded to nearest bucket value.
    # map audio duration to the closest bucket
    df_per_sample[audio_feature_to_analyze + '_bucket'] = df_per_sample[audio_feature_to_analyze].apply(
        lambda x: min(audio_feature_buckets, key=lambda y: abs(x - y)))

    # calculate average WER per audio duration bucket
    df_per_sample_wer_feature = df_per_sample_selected_systems.groupby(['system', audio_feature_to_analyze])[metric].mean().reset_index()
    # add column with number of samples for specific audio bucket size
    df_per_sample_wer_feature['number_of_samples'] = df_per_sample_selected_systems.groupby(['system', audio_feature_to_analyze])[metric].count().values

    df_per_sample_wer_feature = df_per_sample_wer_feature.sort_values(by=audio_feature_to_analyze)
    # round values in WER column in df_per_sample_wer to 2 decimal places
    df_per_sample_wer_feature[metric].round(2)
    # transform df_per_sample_wer. Use system values as columns, while audio_duration_buckets as main index
    df_per_sample_wer_feature_pivot = df_per_sample_wer_feature.pivot(index=audio_feature_to_analyze, columns='system', values=metric)
    df_per_sample_wer_feature_pivot = df_per_sample_wer_feature_pivot.round(2)

    df_per_sample_wer_feature_pivot['number_of_samples'] = df_per_sample_wer_feature[
        df_per_sample_wer_feature['system'] == selected_systems[0]].groupby(audio_feature_to_analyze)[
        'number_of_samples'].sum().values

    # put number_of_samples as the first column after index
    df_per_sample_wer_feature_pivot = df_per_sample_wer_feature_pivot[
        ['number_of_samples'] + [col for col in df_per_sample_wer_feature_pivot.columns if col != 'number_of_samples']]

    return df_per_sample_wer_feature_pivot, df_per_sample_wer_feature